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ABSTRACT

In this paper, we design a new single-input multiple-output context-aware cognitive transceiver (CTR) that is able to switch
to the best performing modem in terms of link-level throughput. On the top of conventional adaptive modulation and
coding, we allow the proposed CTR to make best selection between three different pilot-utilization modes: conventional
data-aided (DA) or pilot-assisted, non-DA (NDA) or blind, and NDA with pilots, which is a newly proposed hybrid ver-
sion between the DA and NDA modes. We also enable the CTR to make best selection between two different channel
identification schemes: conventional least-squares (LS) and newly developed maximum-likelihood estimators. Depending
on whether pilot symbols can be exploited or not at the receiver, we further enable the CTR to make the best selection
among two data detection modes: coherent or differential. Owing to exhaustive link-level simulations on the downlink of
a long-term evolution system, we draw out the optimal decision rules in terms of the best combination triplet of pilot-
use, channel-identification, and data-detection modes that yield the best link-level throughput as function of channel type,
mobile speed, signal-to-noise ratio, and channel quality indicator. The proposed CTR offers a link-level throughput gains
improvement as high as 700% compared with DA LS for VehB channel type at a mobile speed of 100 km/h in the low
signal-to-noise ratio region. For VehA channels, its throughput gain improvements can reach 114%. For PedA and PedB
channels, the proposed CTR provides throughput enhancements of about 66% and 330%, respectively. Moreover, realistic
simulations at the system-level of the long-term evolution-HetNet network suggest that the new context-aware CTR out-
performs the conventional transceiver (i.e., pilot-assisted LS-type channel estimation with coherent detection) by as much
as 50% and 60% gains in average and cell-edge (i.e., five percentile) throughputs, respectively, in the high-clustering case
with type-B channels. In the low clustering scenario, the average and cell-edge throughput gain improvements offered by
the proposed CTR exceed 80% and 90% for type-B channels. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the strongest driving forces for wireless technol-
ogy evolution today is 4G (4th Generation), also known as
LTE-Advanced (Long Term Evolution) or IMT-Advanced
(International Mobile Telecommunications) [2]. 4G allows
high-speed wireless data delivery at much lower costs and

†A previous version of this paper was invited and presented in the Inter-

national Conference on Wireless Communications and Mobile Com-

puting (IWCMC) 2015 [1]. In this paper, we extend our experimental

assessments to both frequency-selective channels and low-clustering

scenarios.

latency while providing much higher rates, spectrum effi-
ciency, and coverage. Most importantly, it promises the
provision of future high-speed wireless data services every-
where closer to the mobile user in a seamless and versatile
fashion, no matter what the surrounding environment and
link conditions are. This stringent requirement calls for
the development of new cognitive transceivers that are
capable of promptly and properly self-adapting to variable
operating conditions in order to constantly maximize their
performance.

It is precisely in this vibrant research context that we
get onto the emerging cognitive radio [3,4] from a rather
uncommon perspective today. Indeed, cognitive radio is
reduced in most recent works to one of its two primary
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objectives: exploit efficiently the radio spectrum with
dynamic spectrum access (DSA) that allocates the least
occupied frequencies, though licensed and reserved, to sec-
ondary users who are short of bandwidth [5–7]. Here,
we take up its second primary objective of providing
highly reliable communications anywhere anytime, so far
addressed in a conventional manner, but rarely tackled
today from a new level of “cognitive wireless com-
munications” [4] where cognition could possibly handle
many dynamic reconfiguration dimensions other than spec-
trum allocation, the conventional one. In this context,
we develop in this paper a new context-aware cognitive
transceiver (CTR) that is able to self-adjust its antenna-
array processing structure and air-interface configuration
for optimum performance. More specifically, the proposed
CTR is able to select the best combination triplet of
pilot-use, channel-identification, and data-detection modes
that achieve the best link-level performances against
channel conditions in terms of channel type, mobile
speed, signal-to-noise ratio (SNR), and channel quality
indicator (CQI).

Many recent research works have tackled the problem
of channel estimation for LTE systems with the ultimate
goal of improving coherent detection. For instance, opti-
mizing the pilot symbols pattern was considered in [8] and
[9]. Exploiting channel correlations in the time and fre-
quency domains to enhance channel estimation in OFDM
systems was also proposed in [10]. Reducing the com-
putational complexity of the MMSE channel estimation
algorithm in the LTE standard was also considered in
[11]. As a matter of fact, periodic transmission of known
symbols, according to a predefined and static insertion
rate, is assumed by the aforementioned channel estima-
tion algorithms as they are designed for coherent detection
receivers. Yet in order to maximize the system through-
put, the required pilot insertion rate and the choice of
the appropriate channel estimation scheme can be opti-
mized depending on user mobility. In fact, if the channel
is assumed to be locally constant for low-mobility users, it
can be accurately estimated from pilot observations only,
by applying, for instance, the conventional data-aided (DA)
least-squares (LS) estimator, and then used to decode the
data at non-pilot observations. For high mobility users,‡

however, the channel varies appreciably between consec-
utive pilot positions and increasing the number of pilots
in order to track its variations leads to unacceptably high
overheads. In this situation, by trading computational com-
plexity for spectral efficiency, more sophisticated channel
estimation approaches that are able to exploit observations
at both pilot and non-pilot positions can be envisaged.

Motivated by these facts, we develop in this paper
a cognitive transceiver that switches to the best per-
forming channel identification algorithm between LS and

‡Current and future generation multi-antenna systems such as LTE,

LTE-A, and beyond (LTE-B) are indeed expected to support reliable

communications at very high velocities reaching 500 Km/h (e.g., high-

speed trains).

maximum-likelihood (ML), and the best estimation mode
between DA, NDA, and non-DA (NDA) with pilots. In
fact, on the top of the conventional LS estimator, we inte-
grate the very recent ML algorithm [12] that is tailored
specifically toward time-varying SIMO channels. More-
over, the latter is able to handle the three aforementioned
estimation modes on the top of its capabilities to track
fast time variations with user velocities reaching 500 km/h.
The underlying ML estimator is based on a piece-wise
polynomial-in-time expansion for the channel involving
very few unknown coefficients. In the DA scenario where
the receiver has access to a pilot sequence, the DA estima-
tor is derived in closed form. In the NDA case, however,
the ML estimates for the unknown channel’s polynomial
approximation coefficients are retrieved iteratively using
the expectation-maximization concept and the algorithm
converges within few iterations.

The performance of the proposed context-aware CTR
is assessed by conducting exhaustive simulations at both
the link and system levels. For link-level assessment pur-
poses, we simulate a wireless system consisting of one user
equipment (UE) and one base-station (BS). We first iden-
tify the performance pertaining to each couple of fchannel
estimator (LS or ML), data detection (DA, NDA, or NDA
with pilots)g apart and draw out the optimal decision
rules in terms of the best performing fchannel estimator,
detection modeg configuration. Block error rate (BLER)
versus SNR results are then fed to a system-level simula-
tor, wherein a whole network is simulated in order to assess
the performance of the proposed CTR under more realistic
operating conditions that account for inter-cell and intra-
cell interference sources. Link-level simulations reveal that
the proposed cognition concept offers throughput gains in
almost all operating conditions up to as much as 700%
against to the conventional non-cognitive transceiver that
constantly relies on the pilot-assisted LS channel estimator
with coherent detection. System-level simulation results
also suggest that the new context-aware CTR offers per-
formance gains as high as 80% and 90% in terms of
average and cell-edge (i.e., five percentile) throughputs,
respectively.

The remainder of this paper is structured as follows.
In Section 2, we introduce the context-aware CTR modes
along with the different channel estimation schemes. In
Section 3, link-level and system-level simulations results
are presented and discussed in order to illustrate the
tremendous performance gains offered by the proposed
CTR. Finally, concluding remarks are drawn out in
Section 4.

In the sequel, some of the common notations will be
used. In fact, vectors and matrices are represented in lower-
case and upper-case bold fonts, respectively. Besides,
f.g�1, f.gT , and f.g� represent the inverse, the transpose,
and the Hermitian (transpose conjugate) operators, respec-
tively. We will also denote the probability mass function
(PMF) for discrete random variables by PŒ.� and the pdf for
continuous random variables by p../. The statistical expec-
tation with respect to any random variable is denoted as
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Ef.g. Furthermore, the operators <f.g, f.g� and j.j return
the real part of any complex number, its conjugate, and its
amplitude, respectively.

2. CONTEXT-AWARE COGNITIVE
TRANSCEIVER MODES

2.1. Data-aided or pilot-assisted mode

Pilot symbols are reference (i.e., known) symbols inserted
according to a predefined mapping to be used by the
receiver for channel estimation and synchronization pur-
poses. The LTE DL pilot mapping is depicted in Figure 1.
An LTE link-level SIMO transceiver block diagram with
DA channel estimation is also shown in Figure 2 for
antenna array configuration with Nr receiving antenna ele-
ments. A brief description of each module is provided
hereafter:

Figure 1. Long-term evolution downlink pilot mapping.

� Turbo Coding: Introduces redundancy in the
sources’ binary data sequence to mitigate channel
errors. The coding rate is selected according to the
Channel Quality Indicator (CQI) as described in
Table I.

� Scrambling: Interleaves code bits (we use the scram-
bler described in [13]).

� QAM modulation: Maps the code binary sequence
to complex symbols.

� OFDM symbol assembly: Maps symbols to a time-
frequency grid of size Nfreq � Nsymb.

� Zero Padding, Cycling prefix, and IFFT: Zero
padding consists in adding NIFFT � Nfreq zeros to
the signal, cycling Prefix consists in prefixing each
OFDM symbol with a portion of its tail whose size
must be greater or equal to the duration of the multi-
path delay spread. It can be configured to normal with
durations of 5.2 and 4.7 �s for the first and remaining
OFDM symbols, respectively, or to extended with a
duration of 16.7�s for all OFDM symbols. We opt for

Table I. AMC schemes used by LTE downlink simulator.

CQI-CnCQI-D Modulation Coding rate

1 QPSKnDQPSK 0.0762
2 QPSKnDQPSK 0.1172
3 QPSKnDQPSK 0.1885
4 QPSKnDQPSK 0.3008
5 QPSKnDQPSK 0.4385
6 QPSKnDQPSK 0.5879

7 16QAMnD16StarQAM 0.3691
8 16QAMnD16StarQAM 0.4785
9 16QAMnD16StarQAM 0.6016

10 64QAMnD64StarQAM 0.4551
11 64QAMnD64StarQAM 0.5537
12 64QAMnD64StarQAM 0.6504
13 64QAMnD64StarQAM 0.7539
14 64QAMnD64StarQAM 0.8525
15 64QAMnD64StarQAM 0.9258

AMC, adaptive modulation and coding; LTE, long-term evolution.

Figure 2. Block diagram of an long-term evolution downlink link-level single-input multiple-output transceiver with data-aided channel
estimation.
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normal cyclic prefix in our simulations. IFFT is the
inverse fast Fourier transform modulating the signal
before transmission.

� Soft Sphere Decoder: The sphere decoder extracts
soft bit decisions from the received signal, y, given the
channel estimatebh. The soft sphere decoder computes
the following log-likelihood ratios (LLRs):

Lb D log

0@P
h
xb D C1 j y,bhi

P
h
xb D �1 j y,bhi

1A, b D 1, 2, : : : , Q

(1)

where xb is the bth bit among the Q bits of each
transmitted symbol.

� Hard bit decision: Having the soft bit decision from
the sphere decoder, this module decides of the binary
transmitted bit.

� Channel estimation: We use either the conventional
LS or the newly proposed ML channel estimator
described later.

2.1.1. Least-squares channel estimator.

The LS channel estimates are obtained by minimizing
the squared difference between the vector of received sam-
ples and the known pilot symbols. Let yi,DA.q/ denote the
received signal (at the output of the DFT block) on pilot
subcarrier i among Npilot pilot subcarriers at the OFDM
(pilot) symbol of index q. For convenience, we will hence-
forth omit the time index q. The transmitted pilot symbol,
xi,DA, is related to yi,DA as follows:

yi,DA D hixi,DA C wi i D 0, 1, : : : , Npilot � 1 (2)

where hi is the frequency-domain complex channel coef-
ficient and wi is a zero-mean Gaussian noise. The matrix
notation of (2) is

yDA D XDAhC w (3)

where XDA D diag
˚
x0,DA, x1,DA, : : : , xNpilot�1,DA

�
, h D�

h0, h1, : : : , hNpilot�1
�T , and w D

�
w0, w1, : : : , wNpilot�1

�T .

The LS algorithm minimizes .yDA�XDAh/�.yDA�XDAh/
to estimate the channel frequency response at pilot posi-
tions thereby leading to [14]:

bhLS D X�1
DAyDA (4)

The estimates for the channel coefficients at non-pilot sub-
carriers are then obtained by interpolation [15]. However,
when the channel is fast fading (i.e., high velocity), the-
underlying pilot symbols’ spacing may not be sufficient
for accurate tracking of the channel time variations. Note
here that decreasing pilot spacing increases pilot over-
head thereby limiting the effective throughput, which is not
desirable for any communication system.

2.1.2. Maximum-likelihood channel estimator.

Here, we capitalize on the ML channel estimator intro-
duced recently in [12]. Over consecutive OFDM symbols,
the DA ML estimator captures the channel’s time varia-
tions via a polynomial-in-time expansion of order .J � 1/.
In fact, the frequency-domain channel over each frthg

Nr
rD1

antenna branch and ith subcarrier can be modeled as
follows [16]:

hi,r.tn/ D
J�1X
jD0

c. j/
i,r t j

n C REM.i,r/
J .tn/ (5)

where tn D nTs with Ts being the OFDM symbol period.
The polynomial order J�1 is a Doppler-dependent parame-
ter optimized in [12]. Moreover, c.j/i,r is the jth coefficient of
the underlying channel polynomial approximation over the
ith subcarrier and the rth antenna element. The remainder
of the Taylor series expansion, REM.i,r/

J .tn/, can be driven
to zero by dividing the whole observation window into
multiple local approximation windows of sufficiently small
sizes. Therefore, the channel can be locally approximated
as follows [12]:

hi,r.tn/ D
J�1X
jD0

c.j/i,r tjn (6)

In our simulations, ML channel estimation is performed
independently over each pilot subcarrier. For the sake
of simplicity, we also omit the subcarrier index in the
remainder of this paper because the very same estimation
procedure applies for all subcarriers.

To use a small J in (5) and avoid costly inversions of
large-size matrices, the new DA ML estimator partitions
the whole observation window into K local approximation

windows of the same size. Let ck,r D
h
c.0/k,r , c.1/k,r , : : : ,

c.J�1/
k,r

iT
and y.k/r,DA D

h
y.k/r .t1/ y.k/r .t2/ : : : y.k/r

�
tPDA

� i
be, respectively, the vectors that contain the J
unknown polynomial coefficients and the PDA received
pilot samples§ corresponding to the rth antenna over the

kth approximation window. Then, by denoting ck D
h
cT

k,1,

cT
k,2, : : : , cT

k,Nr

iT
and y.k/DA D

h
y.k/1,DA y.k/2,DA : : : y.k/Nr ,DA

iT
,

the ML estimator maximizes the probability density
function (pdf) of y.k/DA, parametrized by ck as follows:

p
�

y.k/DA; ck j Bk

�
D

1

.2��2/NDANr
�

exp

	
�

1

2�2

h
y.k/DA � Bkck

i� h
y.k/DA � Bkck

i

(7)

§Note here that PDA is the number of pilot positions within each

approximation window covering NDA pilot and non-pilot received

samples. The approximation window size NDA is another Doppler-

dependent design parameter optimized in [12].
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Figure 3. Block diagram of long-term evolution downlink link-level single-input multiple-output transceiver for non-data-aided
channel estimation.

where Bk is a PDANr � JNr block-diagonal matrix defined
as Bk D blkdiagfAkT, AkT, : : : , AkTg. Here, Ak is the
PDA � PDA diagonal matrix containing the pilot sym-
bols covered by the kth approximation window, that is,
Ak D diag

˚
ak.t1/, ak.t2/, : : : , ak

�
tPDA

��
, and T is a

Vandermonde matrix given by the following:

T D

0BBBB@
1 t1 : : : tJ�1

1

1 t2 : : : tJ�1
2

...
...

. . .
...

1 tPDA : : : tJ�1
PDA

1CCCCA (8)

The estimates of the polynomial coefficients over all the
receiving antenna branches are obtained by setting the par-

tial derivative of the natural logarithm of p
�

y.k/DA; ck j Bk

�
in (7) to zero thereby leading to the following:

bck,DA D
�

B�k Bk

��1
B�k y.k/DA (9)

The DA ML estimates for the channel coefficients, at both
pilot and non-pilot positions, are obtained by injectingbck,DA in (9) back into (5).

2.2. Non-data-aided with pilots
or hybrid mode

Ensuring reliable communications is the purpose of all
wireless communication systems. However, user mobility
and surrounding scatters’ motion make accurate estimation
of highly time-varying channels a truly challenging task. In
fact, relying solely on pilot symbols that are often inserted
far apart, in the time-frequency grid, do not enable accu-
rate tracking of fast-varying channels. Samples received
at non-pilot positions are also exploited hereafter in a
hybrid channel identification scheme in order to enhance
the system’s performance.

2.2.1. Recursive Least Squares (RLS)

channel estimator.

The hybrid mode of the LS channel estimator (using
only pilot symbols to estimate the channel) is the RLS
algorithm that relies on both data and pilot symbols to

Figure 4. Differential modulation block diagram for: (a) QPSK,
and (b) 16 QAM (� is a time (or frequency) index for time (or

frequency) differential modulation.

track the channel. The algorithm recursively estimates the
channel polynomial approximation coefficients defined in
(5). In fact, stacking the channel coefficients (across all
the antennas) at the pth OFDM symbol and subcarrier i in
the vector hp D

�
hi,1.pTs/, hi,2.pTs/, : : : , hi,Nr .pTs/

�T , it
follows from (6) that

hp D Cvp (10)

where vp D Œ1, p, : : : , pJ�1�T and C is a matrix that con-
tains the polynomial approximation coefficients over all the
antenna branches (normalized by Ts), that is,

C D
�
Qci,1, Qci,2, : : : Qci,Nr

�T (11)

where Qci,r D
h
Qc.0/i,r , Qc.1/i,r , : : : , Qc.J�1/

i,r

iT
and Qc.j/i,r D c.j/i,r Tj

s.

Note here that for ease of exposition, we drop the sub-
carrier index i because the same procedure is used for all
subcarrires. At OFDM symbol pC1, the previous detected
symbols are used as a training sequence of p symbols. In
fact, given the previous detected symbols

˚
xp0
�p

p0D1 and

1418 Wirel. Commun. Mob. Comput. 2016; 16:1414–1430 © 2016 John Wiley & Sons, Ltd.
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the corresponding received vectors,
˚
yp0
�p

p0D1 2 CNr�1,
over all the antenna branches, the polynomial coefficients
matrix, C, given in (11) is estimated using the weighted LS
method as follows [17]:

bCpC1 D arg min
C2CNr�J

pX
p0D1

ˇp0
��yp0 � Cvp0xp0

��2 (12)

where ˇp0 is the p0th weighting coefficient given by ˇp0 D

�p�p0 where � 2 R is referred to as a forgetting factor.
The exponential weighted RLS algorithm is implemented

as follows:

�p D ˆ
�1
p�1vpxp,

˛p D
1

�C �
�
p vpxp

,

ˆ�1
p D �

�1ˆ�1
p�1 � �

�1˛p�p�
�
p

ep D yp �bCpvpxp,bCpC1 D bCp C ˛pep�
�
p

Figure 5. Decision rules of the cognitive transceiver, CTR, and the throughput gain percentages against the conventional data-aided
(DA) least-squares (LS) receiver (with coherent detection) versus SNR for different channel types and mobile speeds.

Table II. Link-level simulations parameters.

Number of user equipments 1
Channel bandwidth (MHz) 15
Carrrier frequency (GHz) 2.1
Frame duration (ms) 10
Subframe duration (ms) 1
Subcarrier spacing (KHz) 15
FFT size 128
Number of subcarriers/RB 12
DL bandwidth efficiency 77.1%
OFDM symbols 14
per subframe
CP length .�s/ Normal: 5.2 (first symbols)

4.69 (six following symbols)
Transmit mode SIMO
Channel types PedA, VehA, PedB, and VehB
Channel coding Convolutional turbo encoder

Wirel. Commun. Mob. Comput. 2016; 16:1414–1430 © 2016 John Wiley & Sons, Ltd. 1419
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For initialization, bC1 is considered to be identically zero
and ˆ�1

0 is set to %I.J/ where % � 1 is a constant with
sufficiently large value. Moreover, x1 is assumed to be
a pilot symbol. The estimated polynomial approximation
matrix, bCpC1, is then used in (10) along with vpC1 in

order to find bhpC1 that is required to detect the .p C 1/th

symbol xpC1.

2.2.2. Maximum-likelihood channel estimator.

We consider the expectation maximization (EM)-based
ML channel estimator recently introduced in [12]. This
new estimator jointly exploits both pilot and data sym-
bols to track the channel variations. In a first step, we
apply over each given subcarrier the ML channel esti-
mator that relies on pilot observations only, as described
previously in Section 2.1.2, in order to find initial esti-
mates for the channel coefficients at both pilot and non-
pilot positions. In a second step, we apply the EM
algorithm over all the received samples (i.e., pilots and
non-pilots) in order to jointly estimate the channel coef-
ficients and detect the unknown data symbols. The iter-
ative EM-based algorithm runs in two main steps and
uses as initialization bck,DA obtained in (9) from pilot
positions only.

� Expectation step (E-Step):
During the E-Step, the pdf defined in (7) takes into

account all the possible transmitted symbols famg
M
mD1

where M is the modulation order. In fact, at each EM

iteration l, and within each kth approximation win-
dow (of size NNDA symbols), the objective function is
updated as follows:

Q
�

ck jbc.l�1/
k

�
D �NNDANr ln.2��2/ �

1

2�2

NrX
rD1

�

 
M.r/

2,k C

NNDAX
nD1

˛
.l�1/
n,k

ˇ̌
cT

r,kt.n/
ˇ̌2

�2ˇ.l�1/
r,n,k .cr,k/

!
(13)

where M.r/
2,k D Efjyr,k.n/j2g is the second-order

moment of the received samples over the rth receiv-

ing antenna branch and t.n/ D
�
1, tn, t2n, : : : , tJ�1

n

�T
.

Moreover, by denoting the constellation alphabet as
C D fa1, a2, : : : , aMg, the other quantities involved in
[12] are given by

˛
.l�1/
n,k D

MX
mD1

P.l�1/
m,n,k jamj

2 (14)

ˇ
.l�1/
r,n,k .cr,k/ D

MX
mD1

P.l�1/
m,n,k <

˚
y�r,k.n/amt.n/T cr,k

�
(15)

Table III. Multipath power delay profile.

Channel type Relative delay (ns) Relative power (dB)

PedA

0 0
110 �9.7
190 �19.2
410 �22.8

PedB

0 0
200 �0.9
800 �4.9

1200 �8
2300 �7.8
3700 �23.9

VehA

0 0
310 �1
710 �9

1090 �10
1730 �15
2510 �20

VehB

0 �2.5
300 0

8900 �12.8
12900 �10
17100 �25.2
20000 �16

1420 Wirel. Commun. Mob. Comput. 2016; 16:1414–1430 © 2016 John Wiley & Sons, Ltd.
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where P.l�1/
m,n,k D P

�
am j yk.n/;bc .l�1/

�
is the a pos-

teriori probability of am at iteration .l � 1/ that is
computed using the Bayes’ formula as follows:

P.l�1/
m,n,k D

PŒam�p
�

yk.n/jam;bc.l�1/
k

�
p
�

yk.n/;bc.l�1/
k

� (16)

Since the transmitted symbols are assumed to be
equally likely, we have P.am/ D

1
M and therefore:

p
�

yk.n/;bc.l�1/
k

�
D

1

M

MX
mD1

p
�

yk.n/jam;bc.l�1/
k

�

D
1

M.2��2/Nr

MX
mD1

exp

(
�

1

2�2

NrX
rD1

ˇ̌
yr,k.n/

�amcT
r,kt.n/

ˇ̌2)
(17)

� Maximization step (M-Step):
During the M-Step, the objective function obtained

in (13) is maximized with respect to ck:

bc.l/k D argmax
ck

Q
�

ckjbc.l�1/
k

�
(18)

yielding the following more refined estimates for the
polynomial approximation coefficients:

bc.l/r,k D

 NNDAX
nD1

t.n/t.n/T
!�1 NNDAX

nD1

�
.l�1/
r,n,k t.n/ (19)

Figure 6. Block error rate curves for different channel estimation algorithms and data detection modes implemented for our CTR for
different channel types and mobile speeds: a) PedA 2 km/h, b) VehA 30 km/h, c) PedB 2 km/h, and d) VehB 100 km/h; and for: 1)

QPSK/CQI D 1, 2) 16QAM/CQI D 7, and 3) 64QAM CQI D 10 MCSs.
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Here, �.l�1/
r,n,k is given by:

�
.l�1/
r,n,k D

hba.l�1/
k .tn/

i�
yr,k.tn/ (20)

in which

ba.l�1/
k .tn/ D

MX
mD1

P.l�1/
m,n,k am (21)

is the soft symbol estimate at iteration l�1. Note here
that the EM-based algorithm described earlier is iter-
ative in nature and as such requires accurate initial
guesses about the polynomial-approximation coeffi-
cients in order to converge to the global maximum of
the Log-Likelihood function (LLF). For this reason, it
is initialized using the pilot-based DA ML estimates
already obtained in (9) as discussed in some depth
in [12].

2.3. Non-data-aided or blind mode

For blind or NDA channel estimation, no pilot symbols
are exploited by the receiver. Phase ambiguity is resolved
by differential modulation. The blind RLS channel estima-
tor algorithm is already the one described in Section 2.2.1.
However, an arbitrary guess of the first transmitted sym-
bol is used to initialize the recursive algorithm. The blind
channel ML estimation algorithm is also the one described
in Section 2.2.2. The only difference, however, is that the
initialization is arbitrary and random. Figure 3 presents
the block diagram of the SIMO transceiver with the NDA
channel estimation. On the top of those already detailed in
Section 2.1, the new modules are described as follows:

� Differential modulation: Modulates the phase dif-
ference between two consecutive transmitted symbols
[18] as described in Figure 4 .

� STAR QAM Demapper: To fully exploit the poten-
tial power of channel coding, soft-decision based
demodulation is required. For this purpose, we use
the soft decision aided DAPSK detection algorithm

Table IV. System-level simulation parameters.

Macrocell parameters

Cellular layout Hexagonal grid, 7 cell sites
with BTS in the center of the cell

Inter-site distance 500 meters
Minimum UE to macro-BS distance 35 meters
Path loss model TS 36.942, sub-clause 4.5.2
Antenna pattern 3-dimensional TS 36.942
TX antennas 1
Shadowing Log-normal with 10 dB standard deviation
LTE BS antenna gain after cable loss7 17 dBi
Macro BS antenna height 32 meters
Maximum macro-BS TX power 46 dBm (conventional)
MCL 70 dBm
Scheduling algorithm Proportional Fair
Resource Block width 180 kHz

Pico-cell parameters
Cellular layout Circular shape with BTS in the center of cell
Minimum distance between pico pNodeBs 40 meters
Minimum distance between new node and regular nodes 75 meters
Minimum UE to pico-BS distance 10 meters
Path loss model TS 36.942, sub-clause 4.5.2
Antenna pattern Omnidirectional
TX antennas 1
shadowing Log-normal with 10 dB standard deviation
Antenna gain 5 dBi
Maximum pico-DS TX power 30 dBm
Scheduling algorithm Proportional Fair

UE parameters
UE Rx antennas 2
UE antenna gain 0 dBi
UE noise figure 9 dB
Number of UEs per cell-site area 60
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Figure 7. Long-term evolution HetNet empirical CFDs of downlink system-level throughput for (1) 1 pico-cell per macro area, (2) 2
pico-cells per macro area, and (3) 4 pico-cells per macro area; a) total cell-site, b) macro-cell, and c) pico-cell in case of low clustering

over type-A channels.

developed in [19] and [20] and referred to hereafter
as the STAR QAM Demapper. The a posteriori LLR
expression used in the joint amplitude-phase detector
is given by:

LLR.bm/ D ln

 P
s�2sbmD1

exp Œd.'� ,!l/�P
s�2sbmD0

exp Œd.'� ,!l/�

!
(22)

where sbmD0 and sbmD1 represent the set of sym-
bols went the mth bit, bm, is 0 and 1, respectively.
The probability metric d.'� ,!l/ in case of fully dif-
ferential version, for which no channel estimation is
required, is defined as follows:

d.'� ,!l/ D �
ky�C1 � '

�!ly�k2

QN�0
(23)

where

– y� is the received symbol vector y� D

Œy� ,1; : : : ; y� ,Nr � where � is the time (or fre-
quency) index in the case of time (or fre-
quency) differential modulation.

– ' is the amplitude ratio of two consecutive
transmitted symbols and � 2 Œ1, : : : , 2MA� 1�
where MA is the number of amplitude rings
(MA D 1 for DQPSK, MA D 2 for D16STAR
QAM, and MA D 4 for D64STAR QAM).

– ! is the phase difference of two consecutive
transmitted symbols and l 2 Œ1, .., Mp� where
Mp is the number of phases in the DAPSK
constellation.

– QN�0 is the equivalent noise power defined as
QN�0 D Œ1C.'

� /2�N0 for � 2 f1, : : : , 2MA�1g
where N0 is the observation noise power.

The probability metric dNDA.'
� ,!l/ under NDA

channel estimation is given by

dNDA.'
� ,!l/ D �

���y�C1 � '
�!l Oh� Ox�

���2

N0
(24)

where Oh� is the blind estimate channel vector and Ox�
is the estimated transmitted symbol at the time (or fre-
quency) index � obtained by NDA RLS or NDA ML
channel estimators.
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Figure 8. Long-term evolution HetNet empirical CFDs of downlink system-level throughput for (1) 1 pico-cell per macro area, (2) 2
pico-cells per macro area, and (3) 4 pico-cells per macro area; and: a) total cell-site, b) macro-cell, and c) pico-cell in the case of low

clustering over type-B channels.

2.4. Data detection modes

On the top of selecting the appropriate channel estimator
and pilot-use modes among DA ML, NDA w. pilot ML,
NDA ML, DA LS, NDA w. pilot RLS and NDA RLS, the
new context-aware CTR selects one of the following data
detection schemes:

� Coherent if pilot symbols are used; or
� Non coherent or differential if no pilot symbols

are used.

We also implement a “fully differential” transceiver ver-
sion for which no channel estimation is required. Data
detection is based on differential modulation-demodulation
only as described in Equation (23). We use time differ-
ential modulation as it provides better performance than
frequency differential modulation in case of frequency
selective channels (type-B channels) [21,22].

3. SIMULATION SETUP AND
RESULTS
A 1 � 2 antenna configuration (1 transmit antenna at the
eNodeB and 2 receive antennas at the mobile) is considered

as a SIMO configuration example for discussion in the
rest of this paper. In the following, exhaustive computer
simulations will be conducted in order to assess the per-
formance of the newly proposed CTR at both the link- and
system-levels.

3.1. Link-level simulations

In this section, link-level simulations assuming only one
base station and a single mobile user are used to draw out
decision rules regarding the following:

(1) The best channel estimation algorithm between
the conventional LS and the newly proposed ML
estimators.

(2) The best channel identification mode [among DA,
NDA w. pilot (i.e., hybrid), and completely NDA]
that yields the highest link-level throughput.

(3) The best detection scheme between coherent and
differential detection depending on whether pilot
symbols can be properly exploited or not at the
receiver, respectively.

(4) The best modulation-coding CQI couple among
the conventional coherent (CQI-C) and the newly-
designed differential (CQI-D) ones (cf. Table I).
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Figure 9. System-level total cell-site throughput for (1) low and (2) high clustering; and (a) type-A, and (b) type-B channels.

The CTR selects the best output quadruplet among the
four processing dimensions earlier that offers the best link-
level throughout performance for any given input triplet
of channel conditions, that is, SNR/CQI, mobile speed,
and channel type. The relationships governing the latter
outputs versus inputs, referred to as decision rules, are
determined in Figure 5 offline by link-level simulations in a
so-called learning phase. During online operation, the CTR
selects according to these decision rules the best quadru-
plet of processing modes that best copes in link-level
throughput with the experienced triplet of operating chan-
nel conditions; actually in the same manner conventional
transceivers switch today between adaptive modulation and
coding schemes (MCSs) versus the SNR. From this per-
spective, the proposed CTR actually extends the simple
conventional adaptive modulation and coding (AMC) con-
cept to far larger dimensions, from a single input CSI
parameter to three, and from a single output process-
ing mode to four. Furthermore, the CTR online operation
requires a priori the estimation of the SNR or SINR, the
Doppler (i.e., mobile speed), and the channel type. How-
ever, the results disclosed in this paper assume perfect
knowledge of these channel parameters. More elaborate

simulation results that integrate the estimation of these
parameters, currently under investigation, fall beyond the
scope of the present work.

Most significant LTE DL link-level parameters are sum-
marized in Table II.

We consider Pedestrian A and B (PedA and PedB) slow-
fading channel models for users with a mobile speed of
2 km/h and Vehicular A (VehA) and B (VehB) for fast-
fading channels for users with mobile speeds of 30 and
100 km/h, respectively. Their power delay profiles (PDPs)
are given in Table III.

In order to account for adaptive modulation and coding
(AMC), a CQI value indicates to the eNodeB the modu-
lation order and the channel coding rate adopted in each
subframe.

As highlighted in Table I, the CQI value ranges between
1 and 15 defining, respectively, six, three, and six possible
coding rates for QPSK/DQPSK, 16QAM/D16Star-QAM,
and 64QAM/D64Star-QAM modulations [23]. Note that
CQI-C and CQI-D stand for coherent and differential
detection modulations, respectively. In our simulations, the
CQI values as well as the SNR are assumed to be perfectly
known to the receiver. Assessment of CQI feedback and

Wirel. Commun. Mob. Comput. 2016; 16:1414–1430 © 2016 John Wiley & Sons, Ltd. 1425
DOI: 10.1002/wcm



Cognitive SIMO Transceiver for Enhanced DL-LTE-HetNet Throughput I. Mrissa et al.

delay errors are beyond the scope of this work. BLER
performances results are presented in Figure 6 for differ-
ent channel types and mobile speeds. As seen there, the
best performing channel estimator (among LS and ML)
and data detection mode (among DA, NDA and NDA with
pilots) both depend on the environment conditions charac-
terized by the channel type, mobile speed, and SNR/CQI
values. Based on these results, we identify the optimal
CTR’s decision rules that correspond to the best channel
estimation scheme and data detection mode along with
the associated throughput gain for each channel condition
triplet as depicted in Figure 5. We define three different
CTRs depending on the implemented channel estimation
algorithms. The first one (denoted hereafter as “CTR LS”)
switches between the fully differential detection mode and
the different LS channel estimation schemes, namely, DA
LS, NDA w. pilot LS, and NDA LS. The second one
(referred as “CTR ML”) switches between the fully dif-
ferential detection mode and the different ML channel
estimation schemes, namely DA ML, NDA w. pilot ML,
and NDA ML. The third CTR which is a smarter cognitive
transceiver (denoted hereafter simply as “CTR”) is able to

switch between all the detection modes and channel esti-
mation schemes listed previously for both CTR ML and
CTR LS. Figure 5 depicts the link-level throughput gains
of CTR against the conventional non-cognitive transceiver
that applies the DA LS channel estimator regardless of the
channel conditions. The gains are presented for each triplet
(channel type, mobile speed, SNR/CQI value). Note here
that link-level throughput gains for CTR-LS and CTR-ML
are not shown due to space limitations. Their performance
will, however, be assessed later in Section 3.2. As seen
from Figure 5, CTR offers tremendous link-level through-
put gains over the conventional DA LS transceiver that
can reach up to 700%, in the low-SNR region for VehB
channels and a mobile speed of 100 km/h. For flat-fading
channels (type-A channels), Figure 5 shows that the DA
ML channel estimator outperforms the DA LS estimator
at low mobile speeds (PedA channel). This result confirms
that pilot-only channel estimation is still reliable in the case
of low-speed flat-fading channels. However, for fast-fading
type-A channels (VehA with 30 and 100 km/h), the NDA
with pilots ML channel estimator exhibits better perfor-
mance for most of the CQIs values. Figure 5 also reveals

Figure 10. (1) Average and (2) cell-edge system-level throughput gains for the pico-cell, macro-cell, and the whole cell-site in the
cases of: a) low, and b) high clustering over type-A channels.
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Figure 11. (1) Average and (2) cell-edge system-level throughput gains for the pico-cell, macro-cell, and the whole cell-site in the
cases of: (a) low, and (b) high clustering over type-B channels.

that blind channel estimation (NDA) and differential detec-
tion outperforms the pilot-assisted channel estimators (DA
and NDA with pilots) for high-order modulations over
frequency-selective channels (type-B channels) at medium
and high mobile speeds (VehB with 30 and 100 km/h).
This fact is due to the fast channel variations along succes-
sive subcarriers which makes linear interpolation no longer
reliable. At low mobile speeds (PedB channel), the newly
proposed DA ML outperforms all other channel estimation
algorithms and achieves a throughput gain of about 330%
in the low-SNR region.

3.2. System-level simulations

The link-level-based decision rules, identified in the previ-
ous section, are then fed to a HetNet LTE DL system-level
simulator wherein a whole network is simulated in order to
assess the performance of the proposed CTR under more
realistic operating conditions that account for inter-cell and
intra-cell interference sources. More specifically, we sim-
ulate a 7-hexagonal-cell network with pico-cells dropped
randomly in each macro area. An exhaustive list of the

system-level parameters used in our simulations is pro-
vided in Table IV. We also assume that 50% of the users
move with a speed of 2 km/h and experience PedA/PedB
channel type. The remaining 30% and 20% of the users are
assumed to have a speed of 30 and 100 km/h, respectively,
and experience a VehA/VehB channel type. Furthermore,
we consider the case of f1, 2, 4g pico-cells in each macro
area as defined in [24]. We also consider both low and high
clustering distributions for the UEs. For high clustering
scenario, 2/3 of UEs are dropped in the hotspots. In case
of low clustering scenario, four UEs are dropped in each
hotspot with other UEs are dropped uniformly over the
macro-cell area (including hotspots). Hereafter, we show
the simulation results for the whole cell site, the central
macro-cell as well as its pico-cells. Figures 7 and 8 show
system-level LTE DL throughput CDFs for DA ML, DA
LS, CTR ML, CTR LS, and CTR transceivers for type-
A and -B channels with low clustering¶. In all considered

¶Throughput CDFs in high clustering are not shown here due to space

limitations. However, this case will be assessed later in Figures 9, 10,

and 11.
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cases, CTR always delivers the highest throughput with
overwhelming probability among all transceivers. Figure 9
shows the impact of the number of dropped pico cells
per-macro area on the different cognitive transceivers. The
average DL system-level throughput increases with the
number of picocells with maximum values achieved by
the smartest (ML-LS-based) CTR. Figures 10 and 11,
however, show the average and fifth percentile (i.e., cell-
edge) DL throughput gains at the system-level over type-A
and -B channels, respectively. Huge performance gains
are achieved by combining the cognitive transceiver con-
cept and the new channel estimator recently introduced
in [12]. In fact, in terms of cell-site performance, CTR
exhibits about 25% and 50% DL throughput gains (aver-
age and fifth percentile) over type-A and type-B channels,
respectively. In terms of pico-cell performance, the fifth
percentile (i.e., cell-edge) and average gains exceed 50%
and 40%, respectively, in the low clustering type-A chan-
nel scenario. These gains become as high as 80% and
90% in the low clustering type-B channel scenario, respec-
tively. Based on these results, the proposed CTR turns out
to be extremely advantageous in HetNet small cells where
users suffer from serious interference problem due to weak
transmitted power.

4. CONCLUSION

In this paper, we developed a new SIMO context-
aware transceiver that is able to switch to the best per-
forming modem in terms of link-level throughput. On
the top of conventional AMC, we allow the proposed
CTR to make best selection among three different pilot-
utilization modes: conventional (DA) or pilot-assisted,
non-DA (NDA) or blind, and NDA with pilots which is
a newly proposed hybrid version between the DA and
NDA modes. We also enable the CTR to make best selec-
tion between two different channel identification schemes:
conventional least-squares (LS) and newly developed ML
estimators. Depending on whether pilot symbols can be
properly exploited or not at the receiver, we further enable
the CTR to make best selection among two data detection
modes: coherent or differential. Owing to extensive and
exhaustive link-level simulations on the DL of the LTE sys-
tem, we were able to draw out the decision rules of the
new CTR that identify the best combination triplet of pilot-
use, channel-identification, and data-detection modes that
deliver the best link-level throughput at any operating con-
ditions in terms of channel type, mobile speed, SNR, and
CQI. The proposed CTR offers a link-level throughput gain
in almost all operating conditions up to as much as 700%
against the conventional non-cognitive DA LS transceiver
(i.e., pilot-assisted LS-type channel estimation with coher-
ent detection). Realistic extensive simulations of LTE
heterogeneous network (HetNet) at the system-level also
suggest that the new proposed CTR outperforms the con-
ventional DA LS transceiver by as much as 60% gains in
average and cell-edge (i.e., five percentile) total throughput

per macro-area. Applying our new cognition concept is
hence very promising to enhance LTE HetNet network.
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