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Time Synchronization of Turbo-Coded
Square-QAM-Modulated Transmissions:

Code-Aided ML Estimator and Closed-Form
Cramér–Rao Lower Bounds

Faouzi Bellili , Achref Methenni, Souheib Ben Amor, Sofiène Affes, Senior Member, IEEE, and Alex Stèphenne

Abstract—This paper introduces a new maximum likelihood
(ML) solution for the code-aided (CA) timing recovery problem in
square-quadrature amplitude modulation (QAM) transmissions
and derives, for the very first time, its CA Cramér–Rao lower
bounds (CRLBs) in closed-form expressions. The channel is as-
sumed to be slowly time varying so that it can be considered as
constant over the observation interval. By exploiting the full sym-
metry of square-QAM constellations and further scrutinizing the
Gray-coding mechanism, we express the likelihood function of the
system explicitly in terms of the code bits’ a priori log-likelihood
ratios (LLRs). The timing recovery task is then embedded in the
turbo iteration loop, wherein increasingly accurate estimates for
such LLRs are computed from the output of the soft-input soft-
output decoders and exploited at a per-turbo-iteration basis in
order to refine the ML time delay estimate. The latter is then
used to better resynchronize the system, through feedback to the
matched filter, so as to obtain more reliable symbol-rate samples
for the next turbo iteration. In order to properly benchmark the
new CA ML estimator, we also derive for the very first time the
closed-form expressions for the exact CRLBs of the underlying
turbo synchronization problem. Computer simulations will show
that the new closed-form CRLBs coincide exactly with their em-
pirical counterparts evaluated previously using exhaustive Monte
Carlo simulations. They will also show unambiguously the remark-
able performance improvements of CA estimation against the tra-
ditional nondata-aided scheme, thereby highlighting the potential
performance gains in time synchronization that can be achieved
owing to the decoder assistance. Over a wide range of practical
signal-to-noise ratios (SNRs), CA estimation becomes even equiv-
alent to the completely data-aided scheme in which all the trans-
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mitted symbols are perfectly known to the receiver. Moreover, the
new CA ML estimator almost reaches the underlying CA CRLBs,
even for small SNRs, thereby confirming its statistical efficiency in
practice. It also enjoys significant improvements in computational
complexity as compared to the most powerful existing ML solution,
namely the combined sum-product and expectation-maximization
algorithm.

Index Terms—Iterative algorithms, parameter estimation,
quadrature amplitude modulation (QAM), turbo codes.

I. INTRODUCTION

IN ORDER to provide high quality of service while satisfying
the ever-increasing demand in high data rates, the use of pow-

erful error-correcting codes in conjunction with high-spectral-
efficiency modulations is advocated. Indeed, turbo codes along
with high-order quadrature amplitude modulations (QAMs) are
two key features of current and future wireless communication
standards such as 4G long-term evolution (LTE), LTE-advanced
(LTE-A) and beyond (LTE-B) [1], [2]. As a crucial task in any
digital receiver [3], accurate time synchronization remains a
challenging problem especially for turbo-coded systems since
they are intended to operate at very low signal-to-noise ratios
(SNRs). In fact, the widespread adoption of turbo codes is in
part fuelled by their ability to operate in the near-Shannon limit
even under such adverse SNR conditions [4]. Yet, the salutary
performance of these powerful error-correcting codes is prone to
severe degradations if the system is not accurately synchronized
in time, phase or frequency. The goal of time synchronization,
in particular, consists in estimating and compensating for the
unknown time delay introduced by the channel so as to provide
the decision device with symbol-rate samples of lowest possible
inter-symbol interference (ISI) corruption [3].

The problem of timing recovery for linearly-modulated
transmissions has been heavily investigated over the last few
decades. A plethora of time delay estimators (TDEs) have been
introduced in the open literature and the vast majority of exist-
ing TDEs are intended to operate with complete unawareness
of the code structure (see [5]–[18] and references therein). In
other words, the TD estimate is acquired just after oversampling
the continuous-time signal and then provided to a discrete-time
MF in order to output the symbol-rate samples. The latter are
then used by the turbo decoder, once for all, to decode the data
bits. Therefore, the fact that a large portion of the data bits is
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to become almost perfectly known (i.e., correctly decoded) is
systematically ignored by those estimators. The latter are re-
ferred to as non-code-aided (NCA) or simply NDA TDEs since
no a priori knowledge about the transmitted symbols is used
during the estimation process and, as such, they suffer from
severe performance degradations under harsh SNR conditions.
Being more accurate and usually less computationally expen-
sive, DA methods require, however, the regular transmission of
a completely known (i.e., pilot) sequence thereby limiting the
whole throughput of the system.

It sounds reasonable then to conceive a third alternative as a
middle ground between these two extreme NDA and DA estima-
tion schemes. Indeed, rather than relying on perfectly known or
completely unknown symbols, CA estimation takes advantage
of the soft information delivered by the decoder at each turbo
iteration. In plain English, the decoder assistance is called upon
in an attempt to enhance the timing recovery capabilities yet
with no impact on the spectral efficiency of the system. In fact,
from one turbo iteration to another, more refined soft informa-
tion about the conveyed bits are delivered by the two soft-input
soft-output (SISO) decoders. These are i) the a posteriori LLRs
of the code bits and ii) their extrinsic information. According to
the turbo principle, the latter are iteratively exchanged between
the two SISO decoders until achieving a steady state whose a
posteriori LLRs are used as decision metrics for data detec-
tion. In a nutshell, CA estimation consists simply in leveraging
those soft outputs, by embedding the timing recovery task into
the decoding process, in an attempt to enhance the estimation
performance and vice versa. In the context of timing, phase,
and frequency recovery, such CA estimation scheme is usu-
ally referred to as turbo synchronization [19]. A number of CA
timing recovery algorithms have been proposed over the last
decade [20]–[31] and, to the best of the authors’ knowledge,
only two approaches are derived from ML theory. The first one
[24] is based on the well-known expectation maximization (EM)
algorithm whereas the second [30] is a combined sum-product
(SP) and EM algorithm approach (i.e., an improvement of [24]).
The SP-EM-based ML estimator offers indeed significant per-
formance improvements over the original EM-based estimator
but at the cost of increased computational complexity. In the
SP-EM-based ML approach, an EM iteration loop is required in
each turbo iteration wherein the algorithm switches between the
so-called expectation step (E-STEP) and maximization step (M-
STEP). Roughly speaking, in each turbo iteration, the algorithm
performs the following main four steps for each EM iteration:

1) Obtain new symbol-rate samples (via MF) using the TD
estimate of the previous EM iteration;

2) Update the symbols’ a posteriori probabilities (APoPs)
using those new symbol-rate samples;

3) Marginalize empirically the conditional (on the transmit-
ted symbols) likelihood function with respect to those
APoPs (E-STEP) ;

4) Maximize the marginalized LF with respect to the working
TD variable (M-STEP).

At the convergence of the EM algorithm, the obtained TD
estimate is used to acquire new ISI-reduced (symbol-rate)
samples which will serve as input for the next turbo iteration
where all the aforementioned EM-related steps are repeated.

In this paper, we re-consider the problem of CA time synchro-
nization from both the “performance bounds” and “algorithmic”
point of views. By exploiting the full symmetry of square-
QAM constellations and further scrutinizing the Gray coding
mechanism, we are able to derive a closed-form and very simple
expression for the system’s LF. Typically, marginalization of the
conditional LF with respect to transmitted symbols is carried-
out analytically and the a priori LLRs of the elementary code
bits are explicitly incorporated in the LF expression. We propose
thereof a more systematic framework to their direct integration
in the CA estimation process, thereby eliminating completely
the need for the EM iteration loop under each turbo iteration.
In other words, the new LF needs to be maximized only once
per-turbo iteration (contrarily to SP-EM) after being updated
by the associated a priori LLRs which are computed from the
output of the SISO decoders. Consequently, the proposed CA
timing recovery algorithm offers significant improvements in
computational complexity as compared to the existing SP-EM.
As a matter of fact, the new algorithm is 25 and 50 times less
computationally complex than SP-EM for 64 and 256 QAMs,
respectively. It also enjoys an advantage in terms of estimation
accuracy for low SNR levels and higher-order modulations.

From the “performance bounds” point of view, we also tackle
the analytical derivation of the stochastic CRLBs for the un-
derlying CA estimation problem. Actually, unlike many other
loose bounds, the stochastic1 CRLB is a fundamental lower
bound that reflects the actual achievable performance in prac-
tice [32]. Yet, even under uncoded transmissions, the complex
structure of the LF makes it extremely hard, if not impossible,
to derive analytical expressions for this practical bound, espe-
cially with high-order modulations. Therefore, in the specific
context of timing recovery, the stochastic CRLBs were pre-
viously evaluated using exhaustive Monte-Carlo simulations
(i.e., empirically) in [33] and [34] for both NCA and CA esti-
mations, respectively. Just recently though were their analytical
expressions established in [35] and [36] but only in the NCA
(i.e., NDA) case.

In this paper, we succeed in factorizing the LF of the coded
system as the product of two analogous terms involving two ran-
dom variables that are almost identically distributed, i.e., their
probability density functions (pdfs) have the same expression
but parameterized differently. We then capitalize on this inter-
esting property to derive, for the very first time, the closed-form
expressions for the TD CA CRLBs from arbitrary turbo-coded
square-QAM-modulated transmissions. The new closed-form
expressions corroborate the previous attempts reported in [34]
to evaluate the TD CA CRLBs empirically and offer a way
to their immediate evaluation in practice. Moreover, as will be
shown later, the previously published closed-form NDA CRLBs
[35] boil down to a very special case of the new closed-form CA
CRLBs by simply setting all the code bits’ a priori LLRs to zero.

The rest of this paper is structured as follows. In Section II,
we present the system model. In Section III, we derive the

1In linearly-modulated transmissions, the stochastic model refers to estima-
tion under the assumption of unknown and random transmitted symbols. This
to be opposed to the deterministic model wherein the symbols are assumed to
be unknown but not random [5].
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expression of the log-likelihood function (LLF) and express
it explicitly as function of the coded bits’ a priori LLRs. in
Section IV, we establish the new closed-form expressions for the
TD CA CRLBs. In Section V, we introduce the new CA ML time
delay estimator. In Section VI, we discuss the simulation results
of the proposed CA ML estimator and closed-form CRLBs.
Finally, we draw out some concluding remarks in Section VII.

We also mention beforehand that some of the common no-
tations will be used in this paper. Vectors and matrices are
represented in lower- and upper-case bold fonts, respectively.
IN and 0N denote, respectively, the N × N identity matrix
and the N− dimensional all-zero vector. The shorthand nota-
tion x ∼ N (m,R) means that the vector x follows a normal
(i.e., Gaussian) distribution with mean m and auto-covariance
matrix R. Moreover, {.}T and {.}H denote the transpose and
the Hermitian (transpose conjugate) operators, respectively. The
operators �{.} and �{.} return, respectively, the real and imag-
inary parts of any complex number. The operators {.}∗ and |.|
return its conjugate and its amplitude, respectively, and j is the
pure complex number that verifies j2 = −1. The Kronecker and
Dirac delta functions are denoted, respectively, as δm,n and δ(t).
We will also denote the probability mass function (PMF) for dis-
crete random variables (RVs) by P [.] and the pdf for continuous
RVs by p[.] The statistical expectation is denoted as E{.} and
the notation � is used for definitions.

II. SYSTEM MODEL

Consider a turbo-coded system where a binary sequence of
information bits is fed into a turbo encoder consisting of two
identical recursive and systematic convolutional codes (RSCs)
which are concatenated in parallel via an inner interleaver Π1.
The resulting code bits are fed into a puncturer which selects
an appropriate combination of the parity bits, from both en-
coders, in order to achieve a desired code rate R. The entire
code bit sequence is then scrambled with an outer interleaver,
Π2, and divided into K subgroups of 2p bits each for some inte-
ger p ≥ 1. The kth subgroup of code bits, bk

1 bk
2 · · · bk

l · · · bk
2p , is

conveyed by a symbol a(k) that is selected from a fixed al-
phabet, Cp = {c0, c1, · · · , cM −1}, of a M− ary (with M = 22p )
QAM constellation (i.e., square-QAM). Each point, cm ∈ Cp ,
is mapped onto a unique sequence of log2(M) = 2p bits
denoted here as b̄m

1 b̄m
2 · · · b̄m

l · · · b̄m
2p , according to the Gray cod-

ing mechanism. The symbol cm is selected to convey the kth
code bits subgroup [i.e., a(k) = cm ] if and only if bk

l = b̄m
l for

l = 1, 2, · · · , 2p. We also define the a priori LLR of the lth
code bit, bk

l , conveyed by a(k) as follows:

Ll(k) � ln
(

P [bk
l = 1]

P [bk
l = 0]

)
. (1)

Using the fact that P [bk
l = 0] + P [bk

l = 1] = 1, it can be easily
shown that:

P [bk
l = b̄m

l ] =
1

2 cosh
(
Ll(k)/2

)e(b̄m
l −1) L l (k )

2 , (2)

in which b̄m
l is either 0 or 1 depending on which of the sym-

bols cm is transmitted, at time instant k, and of course on
the Gray mapping associated to the constellation. The obtained

information-bearing symbols {a(k)}K
k=1, are then pulse-shaped

and the resulting continuous-time signal:

x(t) =
K∑

k=1

a(k)h(t − kT ), (3)

is transmitted over the communication channel with T being
the symbol duration and h(t) a unit-energy square-root shaping
pulse. The Nyquist pulse g(t) obtained from h(t) is defined as:

g(t) =
∫ +∞

−∞
h(x)h(t + x)dx, (4)

and satisfies the first Nyquist criterion [3]:

g(nT ) = 0, for any integer n 	= 0. (5)

At the receiver side, assuming perfect frequency and phase
synchronizations2, the (delayed) continuous-time received sig-
nal before matched filtering is expressed as:

y(t) =
√

Esx(t − τ) + w(t), (6)

where Es is the transmit signal energy and τ is the unknown
time delay parameter to be estimated. Moreover, w(t) is a proper
complex additive white Gaussian noise (AWGN) with indepen-
dent real and imaginary parts, each of variance σ2 (i.e., with
overall noise power N0 = 2σ2). The SNR of the channel is also
denoted as:

ρ � Es

N0
=

Es

2σ2
. (7)

An integral step in the derivation of stochastic ML estimators
and CRLBs consists in finding the LLF of the system. This
requires marginalizing the conditional (on the unknown sym-
bols) LF over the constellation alphabet. In completely NDA
estimation (or before data detection), no a priori information
is available about the transmitted symbols. Therefore, the latter
are usually assumed to be equally likely, i.e., with equal a priori
probabilities (APPs). That is to say ∀cm ∈ Cp :

P [a(k) = cm ] =
1
M

for k = 1, 2, · · · ,K. (8)

In CA estimation, however, the actual APPs of the transmit-
ted symbols must be used in order to enhance the estimation
performance as done in the next section. By doing so, we will
ultimately express the LLF explicitly as function of the a priori
LLRs of the individual coded bits. As will be explained later in
Section IV-E, accurate estimates for the underlying LLRs can
be obtained in practice from the soft outputs of the two SISO
decoders at the convergence of the BCJR algorithm [37].

III. DERIVATION OF THE LLF

As widely known, the set of finite-energy signals usually
denoted as:

L2
R =

{
s(t)such that

∫
R
|s(t)|2dt < +∞

}
,

2Note here that the problem of estimating the carrier phase and CFO is the-
oretically decoupled from the problem of estimating the time delay parameter,
both under CA [34] and NCA [35] estimation schemes.
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form an infinite-dimension Hilbert subspace [38] that can be en-
dowed with an orthonormal basis {ϕn (t)}n and an inner product
as follows:

〈s1(t), s2(t)〉 =
∫

R
s1(t)s2(t)∗dt,∀s1(t), s2(t) ∈ L2

R. (9)

Therefore, an exact discrete representation for any continuous-
time signal s(t) ∈ L2

R requires an infinite-dimensional vector, s,
that contains its expansion coefficients,

{
sn = 〈s(t), ϕn (t)〉}

n
,

in the basis {ϕn (t)}n . To sidestep this problem, we first consider
the N -dimensional truncated representation vectors:

yN = [y1, y2, . . . , yN ]T , (10)

wN = [w1, w2, . . . , wN ]T , (11)

xN (τ) = [x1(τ), x2(τ), . . . , xN (τ)]T . (12)

that contain the orthogonal projection coefficients of y(t), w(t),
and x(t − τ), respectively, over the first N basis functions
{ϕn (t)}N

n=1 (for any N ≥ 1), i.e.:

yn =
〈
y(t), ϕn (t)

〉
=
∫

R
y(t)ϕn (t)∗dt, (13)

wn =
〈
w(t), ϕn (t)

〉
=
∫

R
w(t)ϕn (t)∗dt, (14)

xn (τ) =
〈
x(t − τ), ϕn (t)

〉
=
∫

R
x(t − τ)ϕn (t)∗dt, (15)

Using (6) and (13) to (15), it follows that:

yN =
√

EsxN (τ) + wN . (16)

Due to the orthogonality of the basis functions, it can be shown
that the noise projection coefficients, {wn}N

n=1, explicitly given
by (14) are uncorrelated, i.e, E

{
wnw∗

m

}
= 2σ2δn,m . Hence,

they are independent since they are also Gaussian-distributed3

leading to wN ∼ N (0N , 2σ2IN ). Therefore, the pdf of the vec-
tor yN in (16) conditioned on the sequence of transmitted sym-
bols, a = [a(1), a(2), . . . , a(K)]T , and parametrized by τ is
given by:

p(yN |a; τ)

=
N∏

n=1

1
2πσ2

exp
{
− 1

2σ2

∣∣yn −
√

Esxn (τ)
∣∣2} . (17)

Note here that, although we do not show it explicitly, the trans-
mitted symbols are indeed involved in (17) via the coefficients
{xn (τ)}n . After dropping the constant terms that do not depend
explicitly on τ in (17), we obtain the simplified truncated LF:

Λ(yN |a; τ)

= exp

{√
Es

σ2

N∑
n=1

�{ynxn (τ)∗} − Es

2σ2

N∑
n=1

∣∣xn (τ)
∣∣2
}

.(18)

3This is because they are obtained by some linear transformations (i.e., the
orthogonal projection) of the original continuous-time white Gaussian random
process w(t).

The conditional LF which incorporates all the information con-
tained in the non-truncated vector y [or equivalently the re-
ceived continuous-time signal y(t)], is obtained by making N
tend to infinity in (18). By doing so and using the Plancherel
equality, we obtain the following conditional LF:

Λ(y|a; τ) = exp
{√

Es

σ2

∫
R
�{y(t)x(t − τ)∗

}
dt

− Es

2σ2

∫
R
|x(t − τ)|2dt

}
. (19)

Now, replacing the transmitted signal x(t) by its expression
given in (3), and exploiting the fact that the shaping pulse, g(t),
in (4) verifies the first-order Nyquist criterion (5), it can be
shown that:

Λ(y|a; τ) =
K∏

k=1

Ωτ

(
a(k), y(t)

)
, (20)

where

Ωτ

(
a(k), y(t)

)
� exp

{√
Es

σ2

∫
R
�{y(t)a(k)∗

}

×h(t − kT − τ)dt − Es

2σ2

∣∣a(k)
∣∣2} .(21)

The unconditional LF, Λ(y; τ), is obtained by averaging (20)
over all possible transmitted symbol sequences of size K, i.e.,
Λ(y; τ) = Ea{Λ(y|a; τ)} leading to:

Λ(y; τ) =
∑

ci ∈CK
p

P [a = ci ]Λ(y|a = ci ; τ). (22)

Under coded digital transmissions, a simplifying assumption is
usually used in estimation practices, whether CA or NCA, in
order to allow for tractable mathematical derivations of CRLBs
and ML estimators of any parameter. This assumption postulates
that the transmitted symbols are independent (cf. [20]–[33] and
references therein) in spite of the statistical dependence between
the coded bits that is introduced by channel coding. In fact,
before even initiating the decoding process itself, the system
needs to be fully synchronized by estimating the time delay, as
well as, the phase and frequency offsets. Moreover, the decoder
itself needs some estimates for other key channel parameters,
e.g., the channel coefficient, noise variance, SNR, etc. All those
estimates are obtained by applying traditional NDA estimators
directly on the symbol-rate samples that are delivered by the
matched filter before starting data decoding. As a matter of fact,
in digital transmissions, all state-of-the-art NDA estimators (for
any parameter, whether maximum likelihood or moment-based)
are indeed based on the assumption of independent symbols
although the latter are actually dependent due to channel coding.

We emphasize, however, that exploitation of this assumption
does not imply denying to exploit the dependence of the coded
bits during the decoding process itself. Indeed, such dependence
is exploited by the SISO decoders in order to output the esti-
mates for the coded bits’ a posteriori LLRs. The latter are then
used to decode the bits and also to compute their a priori LLRs
(as explained later in Section IV-E) which are in turn used to
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evaluate the CA CRLBs and to find the CA TD ML estimate.
Yet, even by assuming independent symbols (both in this paper
and all existing works), it turns out that no much information is
lost from the estimation point of view. In fact, the resulting CA
estimation schemes achieve the ideal data-aided one (where all
the symbols are perfectly known) over a wide range of practical
SNRs where the completely NDA schemes do not (cf. Figs. 4
and 5 in this paper and the reported simulation results in other
researchers’ works). Using the assumption of independent sym-
bols it follows that:

P
[
a = ci

]
=

K∏
k=1

P
[
a(k) = ci(k)

]
. (23)

Plugging (20) and (23) in (22), it can be shown that:

Λ(y; τ) =
∑

ci ∈CK
p

K∏
k=1

P
[
a(k) = ci(k)

]
Ωτ

(
ci(k), y(t)

)

=
K∏

k=1

∑
cm ∈Cp

P
[
a(k) = cm

]
Ωτ

(
cm , y(t)

)
. (24)

Therefore, the unconditional log-likelihood function (LLF) de-
fined as L(y; τ) � ln

(
Λ(y; τ)

)
, is given by:

L(y; τ) =
K∑

k=1

ln
(
Ω̄k

(
τ, y(t)

))
, (25)

in which Ω̄k

(
τ, y(t)

)
is simply the average of Ωτ

(
a(k), y(t)

)
over the constellation alphabet, i.e.:

Ω̄k

(
τ, y(t)

)
�

∑
cm ∈Cp

P
[
a(k) = cm

]
Ωτ

(
cm , y(t)

)
. (26)

For ease of notations, we will hereafter no longer show the de-
pendence of Ω̄k

(
τ, y(t)

)
on the received signal, y(t), and denote

it simply as Ω̄k (τ). Next, we will further manipulate this term
and ultimately factorize it into two analogous terms which in-
volve two independent and almost identically distributed RVs. In
fact, by further denoting the top-right quadrant of the constel-
lation as C̃p , it follows that Cp = C̃p ∪ (−C̃p) ∪ C̃∗

p ∪ (−C̃∗
p).

Thus, the sum over cm ∈ Cp in (26) can be equivalently
replaced by a sum over each c̃m ∈ C̃p and its three sym-
metrical points in the other quadrants. By doing so and notic-
ing that |c̃m | = | − c̃m | = |c̃∗m | = | − c̃∗m |, we obtain from (21)
and (26):

Ω̄k

(
τ
)

=
∑

c̃m ∈ C̃p

e−
E s
2σ 2 |c̃m |2

×
(
P
[
a(k) = c̃m

]
exp

{√
Es

σ2

∫
R
�{c̃∗m y(t)}h(t − kT − τ)dt

}

+P
[
a(k) = −c̃m

]
exp

{√
Es

σ2

∫
R

×�{−c̃∗m y(t)}h(t − kT − τ)dt

}

+P
[
a(k) = c̃∗m

]
exp

{√
Es

σ2

∫
R
�{c̃m y(t)}h(t − kT − τ)dt

}

+P
[
a(k) = −c̃∗m

]
exp

{√
Es

σ2

∫
R

×�{−c̃m y(t)}h(t − kT − τ)dt

})
. (27)

Using a simple recursive scheme that allows the construction
of arbitrary square-QAM constellations, it has been recently
shown in [39] that the APPs for each symbol a(k) are expressed
as follows (∀c̃m ∈ C̃p ):

P [a(k) = c̃m ] = βkμk,p(c̃m )e
L2p −1(k )

2 e
L2p (k )

2 , (28)

P [a(k) = c̃∗m ] = βkμk,p(c̃m )e−
L2p −1(k )

2 e
L2p (k )

2 , (29)

P [a(k) = −c̃m ] = βkμk,p(c̃m )e−
L2p −1(k )

2 e−
L2p (k )

2 , (30)

P [a(k) = −c̃∗m ] = βkμk,p(c̃m )e
L2p −1(k )

2 e−
L2p (k )

2 , (31)

in which μk,p(c̃m ) and βk are given by:

μk,p(c̃m ) �
2p−2∏
l = 1

e(2b̄m
l −1) L l (k )

2 ,∀c̃m ∈ C̃p (32)

βk �
2p∏

l = 1

1

2 cosh
(
Ll(k)/2

) . (33)

Plugging (28)–(31) back into (27) and using the trivial identity
ex + e−x = 2 cosh(x), it can be shown that:

Ω̄k (τ) = 2βk

∑
c̃m ∈ C̃p

μk,p(c̃m )e−ρ|c̃m |2

×
[
cosh

{√
Es

σ2

∫
R
�{c̃m y(t)}h(t − kT − τ)dt

+
L2p(k) − L2p−1(k)

2

}

+ cosh
{√

Es

σ2

∫
R
�{c̃∗m y(t)}h(t − kT − τ)dt

+
L2p(k) + L2p−1(k)

2

}]
. (34)

Furthermore, by using the relationship cosh(x) + cosh(y) =
2 cosh(x+y

2 ) cosh(x−y
2 ) along with the two identities �{xy}

+ �{x∗y} = 2�{x}�{y} and �{xy} − �{x∗y} = 2�{x}
�{y}, it can be shown that (34) can be rewritten as follows:

Ω̄k (τ)

= 4βk

∑
c̃m ∈ C̃p

μk,p(c̃m )e−ρ|c̃m |2 cosh
{√

Es �{c̃m }
σ 2 uk (τ) + L2p (k)

2

}

× cosh
{√

Es�{c̃m}
σ2

vk (τ) +
L2p−1(k)

2

}]
, (35)
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in which uk (τ) and vk (τ) are the matched-filtered in-phase and
quadrature components of the received signal given by:

uk (τ) =
∫ +∞

−∞
�{y(t)

}
h(t − kT − τ)dt, (36)

vk (τ) =
∫ +∞

−∞
�{y(t)

}
h(t − kT − τ)dt. (37)

Since in the Cartesian coordinate system of the constellation
each c̃m ∈ C̃p can be written4 as c̃m = [2i − 1]dp + j[2n −
1]dp for some 1 ≤ i, n ≤ 2p−1, then the single sum over c̃m in
(35) can be equivalently replaced by a double sum over the two
counters i and n as follows:

Ω̄k (τ) = 4βk

2p −1∑
i=1

2p −1∑
n=1

[
μk,p

(
[2i − 1]dp + j[2n − 1]dp

)

× e−ρ[2i−1]2d2
p cosh

(√
Es [2i − 1]dp

σ2
uk (τ) +

L2p(k)
2

)

× e−ρ[2n−1]2d2
p cosh

(√
Es [2n − 1]dp

σ2
vk (τ) +

L2p−1(k)
2

)]
.

(38)

We also recall the following decomposition recently shown in
[39] for each c̃m = [2i − 1]dp + j[2n − 1]dp ∈ C̃p :

μk,p

(
[2i − 1]dp + j[2n − 1]dp

)
= θk,2p(i)θk,2p−1(n), (39)

where

θk,2p(i) �
p−1∏
l = 1

e(2b̄
( i )
2l −1) L 2l (k )

2 , (40)

θk,2p−1(n) �
p−1∏
l = 1

e(2b̄
(n )
2l−1−1)

L 2l−1(k )
2 . (41)

After using (39) in (38) and splitting the two sums, we obtain
the following much useful factorization for Ω̄k (τ):

Ω̄k (τ) = 4βkFk,2p

(
uk (τ)

)
Fk,2p−1

(
vk (τ)

)
, (42)

where

Fk,q (x) =
2p −1∑
i=1

θk,q (i)e−ρ[2i−1]2d2
p

× cosh
(√

Es [2i − 1]dp

σ2
x +

Lq (k)
2

)
, (43)

in which q is a generic counter that is used from now on to refer
to 2p or 2p − 1 depending on the context. Finally, by using (42)
back in (25) and dropping the constant term 4βk that do not

4Note here that dp is half the minimum inter-symbol distance whose expres-
sion is given in [39], eq. (30) explicitly as function of p for normalized-energy
constellations.

depend on τ , the useful LLF develops into:

L(y; τ) =
K∑

k=1

ln
(
Fk,2p

(
uk (τ)

))

+
K∑

k=1

ln
(
Fk,2p−1

(
vk (τ)

))
. (44)

We succeeded here in decomposing the LLF into two analogous
terms [the two sums in (44)] involving each either RVs uk (τ) or
uk (τ) that will be shortly shown to have almost the same distri-
butions. This is actually the cornerstone result upon which we
will establish the analytical expressions for the CA TD CRLBs
in the next section.

IV. DERIVATION OF THE CA CRLBS

As an overall benchmark, the CRLB lower bounds the vari-
ance of any unbiased estimator, τ̂ , of the time delay parameter,
i.e., E

{
(τ̂ − τ)2

} ≥ CRLB(τ). It is explicitly given by [32]:

CRLB(τ) =
1

I(τ)
, (45)

where I(τ) is the so-called Fisher information for the received
data which is given by:

I(τ) = −E

{
∂2L(y; τ)

∂τ 2

}
. (46)

Using (44) in (46) and owing to the linearity of the partial deriva-
tive and expectation operators, it immediately follows that:

I(τ) =
K∑

k=1

[
γk,2p(τ) + γk,2p−1(τ)

]
, (47)

where

γk,2p(τ) � −E
{
∂2 ln

(
Fk,2p

(
uk (τ)

))
/∂τ 2

}
, (48)

γk,2p−1(τ) � −E
{
∂2 ln

(
Fk,2p−1

(
vk (τ)

))
/∂τ 2

}
. (49)

Before delving too much into details, we state the following
result that is extremely useful to the derivation of the analytical
expressions of the two terms γk,2p(τ) and γk,2p−1(τ).

Lemma 1: uk (τ) and vk (τ) are two independent RVs whose
distributions are given by:

p
[
uk (τ)

]
=

2βk,2p√
2πσ2

Fk,2p

(
uk (τ)

)
e−

u k ( τ ) 2

2σ 2 , (50)

p
[
vk (τ)

]
=

2βk,2p−1√
2πσ2

Fk,2p−1(vk (τ))e−
v k ( τ ) 2

2σ 2 , (51)

with

βk,2p �
p−1∏
l = 1

1

2 cosh
(
L2l(k)/2

) , (52)

βk,2p−1 �
p−1∏
l = 1

1

2 cosh
(
L2l−1(k)/2

) . (53)

Proof: See Appendix A.
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As seen from (50) and(51), the two RVs uk (τ) and vk (τ)
are almost identically distributed (i.e., their pdfs have the
same structure, but they are parameterized differently). There-
fore, when evaluating the required expectation with respect
to either uk (τ) or vk (τ), equivalent derivation steps can be
followed to find either γk,2p(τ) or γk,2p−1(τ). As such, we
will only derive γk,2p(τ) and later deduce the expression of
γk,2p−1(τ) by easy identification. To that end, we denote the
first and second derivatives of Fk,2p(x) in (43), with respect
to the working variable x, by F ′

k,2p(x) and F ′′
k,2p(x), respec-

tively. We therefore establish the second partial derivative of
ln
(
Fk,2p

(
uk (τ)

))
with respect to the time delay parameter, τ ,

as follows:

∂2

∂τ 2
ln
(
Fk,2p(uk (τ))

)

= u̇2
k (τ)

[
F ′′

k,2p(uk (τ))
Fk,2p(uk (τ))

− F ′2
k,2p(uk (τ))

F 2
k,2p(uk (τ))

]

+ ük (τ)
F ′

k,2p(uk (τ))
Fk,2p(uk (τ))

,

in which u̇k (τ) � ∂uk (τ)/∂τ and ük (τ) � ∂2uk (τ)/∂τ 2. We
further show in Appendix A that u̇k (τ) and uk (τ) are two inde-
pendent RVs as well. Thus, by applying the expectation operator
to the previous equation, we obtain γk,2p(τ) as follows:

γk,2p(τ) = E
{
u̇2

k (τ)
}[

E

{
F ′2

k,2p(uk (τ))
F 2

k,2p(uk (τ))

}

− E

{
F ′′

k,2p(uk (τ))
Fk,2p(uk (τ))

}]
− E

{
ük (τ)

F ′
k,2p(uk (τ))

Fk,2p(uk (τ))

}
. (54)

In the sequel, we will derive analytical the expressions for
the four expectations involved in (54) separately. For con-
venience, we define beforehand the following two quantities
(for q = 2p and 2p − 1) that will appear repeatedly in the ob-
tained expressions:

ωk,q � 2βk,q cosh
(

Lq (k)
2

) 2p −1∑
i=1

θk,q (i)d2
p(2i − 1)2, (55)

αk,q � 2βk,q sinh
(

Lq (k)
2

) 2p −1∑
i=1

θk,q (i)dp(2i − 1). (56)

�

IV. A. Derivation of E{u̇2
k (τ)}

In Appendix A, we show that:

u̇k (τ) =
√

Es

K∑
k ′=1

�{a(k′)
}
ġ
(
[k − k′]T

)
+ �{ẇk (τ)

}
,

(57)

where

ẇk (τ) = −
∫ +∞

−∞
w(t)ḣ(t − kT − τ)dt. (58)

Recall here that the transmitted symbols are assumed mutually
independent. As they are also independent from the derivative
noise componentsand exploiting the fact that E

{
ẇk (τ)

}
= 0

(since E
{
w(t)

}
= 0), it can be shown that E

{
u̇2

k (τ)
}

is given
by (59).

E
{
u̇k (τ)2

}
= Es

⎡
⎢⎣

K∑
l = 1

E
{
�{a(l)

}2
}

ġ
(
[k − l]T

)2

+
K∑

l = 1

K∑
n=1
n 	= l

E
{
�{a(l)

}}
E
{
�{a(n)

}}
ġ
(
[k − l]T

)
ġ
(
[k − n]T

)
⎤
⎥⎦

+ E
{
�{ẇk (τ)

}2
}

. (59)

The expected values of �{a(k)
}

and �{a(k)
}2

involved in
(59) are obtained by averaging them over all the points in the
constellation alphabet, Cp , i.e.:

E
{
�{a(k)

}2
}

=
∑

cm ∈Cp

P
[
a(k) = cm

]�{cm

}2
. (60)

E
{
�{a(k)

}}
=

∑
cm ∈Cp

P
[
a(k) = cm

]�{cm

}
. (61)

Starting form (60) and resorting to some algebraic manipula-
tions, we show in Appendix B that:

E
{
�{a(k)

}2
}

= ωk,2p . (62)

Using equivalent derivations, it can be also shown that:

E
{
�{a(k)

}}
= αk,2p . (63)

In order to find the noise contribution through the derivative
term in (59), we recall that the original continuous-time noise is
assumed to be white, i.e., E

{�{w(t1)
}�{w(t2)

}}
= σ2δ(t1 −

t2). Therefore, starting from the expression of ẇk (τ) in (58) and
resorting to equivalent manipulations as in (108) of Appendix
A, we obtain:

E
{
�{ẇk (τ)

}2
}

= σ2
∫

R
ḣ
(
t − kT − τ

)2
dt,

= −σ2
∫

R
h
(
t − kT − τ

)
ḧ
(
t − kT − τ

)
dt,

= −σ2g̈(0). (64)

Notehere that, in line with the left-hand side of (64), the right-
hand side of the same equation is indeed positive since g̈(0) < 0.
This is because the filter g(.) is convex in the vicinity of zero
where it also attains its maximum. Now, using (62) to (64) in
(59), it can be easily shown that:

E
{
u̇k (τ)2

}
= Es

K∑
l = 1

(
ωl,2p − α2

l,2p

)
ġ2
(
[l − k]T

)

+Es

(
K∑

l = 1

αl,2p ġ
(
[l − k]T

))2

− σ2g̈(0). (65)
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B. Derivation of E{(F ′
k,2p(uk (τ))/Fk,2p(uk (τ)))2}

This is nothing but the expected value of a known transfor-
mation of the RV, uk (τ), whose distribution was already estab-
lished in (50). Therefore, it can be evaluated in closed form by
integration over p

[
uk (τ)

]
as follows:

E

⎧⎨
⎩
(

F ′
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
)2
⎫⎬
⎭ =

∫
R

F ′2
k,2p

(
uk (τ)

)
F 2

k,2p

(
uk (τ)

)p[uk (τ)]duk (τ)

=
2βk,2p√

2πσ2

∫
R

F ′2
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)e −u k ( τ ) 2

2σ 2 duk (τ).

After using the explicit expression of F ′
k,2p

(
uk (τ)

)
, the last

equality is further simplified by using the variable substitution
t =

√
2uk (τ)/σ to obtain:

E

⎧⎨
⎩
(

F ′
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
)2
⎫⎬
⎭ =

2ρ

σ2
Ψk,2p(ρ), (66)

where Ψk,2p(.) in the last equality is given by:

Ψk,2p(ρ) =
βk,2pd

2
p√

π

∫ +∞

−∞

λ2
k,2p(t, ρ)

δk,2p(t, ρ)
e−

t 2

4 dt, (67)

with

λk,2p(t, ρ) =
2p −1∑
i=1

(2i − 1)θk,2p(i)e−[2i−1]2d2
p ρ

× sinh
(√

ρ[2i − 1]dpt +
L2p(k)

2

)
,

δk,2p(t, ρ) =
2p −1∑
i=1

θk,2p(i)e−[2i−1]2d2
p ρ

× cosh
(√

ρ[2i − 1]dpt +
L2p(k)

2

)
.

C. Derivation of E{F ′′
k,2p(uk (τ))/Fk,2p(uk (τ))}

This expectation can also be explicitly found by integrating
over p

[
uk (τ)

]
in (50) to yield:

E

{
F ′′

k,2p

(
u(k)

)
Fk,2p

(
uk (τ)

)
}

=
∫

R

F ′′
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)p[uk (τ)]duk (τ)

=
2βk,2p√

2πσ2

∫
R

F ′′
k,2p

(
uk (τ)

)
e

−u k ( τ ) 2

2σ 2 duk (τ), (68)

in which the second derivative of the function Fk,2p(.) defined
in (43) is given by:

F ′′
k,2p(x) =

Esd
2
p

σ4

2p −1∑
i=1

(2i − 1)2θk,2p(i)e−ρ[2i−1]2d2
p

× cosh
(√

Es [2i − 1]dp

σ2
x +

L2p(k)
2

)
. (69)

After expanding (69) using the identity cosh(x + y) =
cosh(x) cosh(y) + sinh(x) sinh(y), plugging the result back

into (68) and then using the fact that sinh(x)e−
x 2

2 is an odd
function (i.e., its integral is identically zero), it follows that (68)
is explicitly given by (70) shown at the bottom of this page.

Moreover, we show via “integration by parts”, the following
equality for any a > 0 and b ∈ R:

∫ +∞

0
cosh

(
bx
)
e−ax2

dx =
1
2

√
π

a
e

b 2

4a , (73)

which is used in (70), with the appropriate identifications, to
yield the following closed-form expression for the expectation
in (68):

E

{
F ′′

2p,α

(
u(k)

)
F2p,α

(
uk (τ)

)
}

=
2ωk,2p

σ2
ρ. (74)

E

{
F ′′

k,2p

(
u(k)

)
Fk,2p

(
uk (τ)

)
}

=
2βk,2pEsd

2
p√

2πσ2σ4
cosh

(
L2p(k)

2

) 2p −1∑
i=1

(2i − 1)2θ
(i)
k,2pe

−ρ[2i−1]2d2
p

×
∫ +∞

−∞
cosh

(√
Es [2i − 1]dp

σ2
uk (τ)

)
e

−u k ( τ ) 2

2σ 2 duk (τ). (70)

γk,2p(τ) = 4ρ2
[
ωk,2p − Ψk,2p(ρ)

]⎡⎣ K∑
l = 1

(
ωl,2p − α2

l,2p

)
ġ2
(
[l − k]T

)
+

(
K∑

l = 1

αl,2p ġ
(
[l − k]T

))2
⎤
⎦

− 2ρ

[
Ψk,2p(ρ)g̈

(
0
)− αk,2p

∑
l 	= k

αl,2p g̈
(
[l − k]T

)]
. (71)

γk,2p−1(τ) = 4ρ2
[
ωk,2p−1 − Ψk,2p−1(ρ)

]⎡⎣ K∑
l = 1

(
ωl,2p−1 − α2

l,2p−1

)
ġ2
(
[l − k]T

)
+

(
K∑

l = 1

αl,2p−1ġ
(
[l − k]T

))2
⎤
⎦

− 2ρ

[
Ψk,2p−1(ρ)g̈

(
0
)

+ αk,2p−1

∑
l 	= k

αl,2p−1g̈
(
[l − k]T

)]
. (72)



10784 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 12, DECEMBER 2017

D. Derivation of E{ük (τ)F ′
k,2p(uk (τ))/Fk,2p(uk (τ))}

To find this expectation, we use a standard approach in which
we first find the expectation conditioned on uk (τ) and then
average the obtained result with respect to uk (τ). By doing so,
we obtain:

E

{
ük (τ)

F ′
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
}

= Euk

{
E
{
ük (τ)

∣∣uk (τ)
}F ′

k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
}

. (75)

In order to find Eü k |uk

{
ük (τ)

∣∣uk (τ)
}

in (75), we must find the
explicit expression of ük (τ) as function of uk (τ). In fact, it is
easy to show that:

ük (τ) =
∫ +∞

−∞
�{y(t)

}
ḧ(t − kT − τ)dt

=
√

Es

K∑
l = 1

�{a(l)
}
g̈
(
[l − k]T

)
+ �{ẅk (τ)

}
. (76)

Moreover, from (99) and (101) in Appendix A, we readily have:

ul(τ) =
√

Es�{a(l)} + �{wl(τ)}. (77)

Therefore, �{a(l)} = 1√
Es

[ul(τ) −�{wl(τ)}] which is used
in (76) to obtain:

ük (τ) =
K∑

l = 1

[
ul(τ) −�{wl(τ)

}]
g̈
(
[l − k]T

)

+�{ẅk (τ)
}
. (78)

Now, since E
{�{ẅk (τ)}} = E

{�{wk (τ)}} = 0 and since the
RVs {ul(τ)}l are mutually independent, it follows that:

E
{
ük (τ)

∣∣uk (τ)
}

= uk (τ)g̈(0) +
K∑

l = 1
l 	= k

E
{
ul(τ)

}
g̈
(
[l − k]T

)
. (79)

But owing to (77) and (63), it immediately follows that:

E
{
ul(τ)

}
=
√

EsE
{�{a(l)}} =

√
Esαk,2p . (80)

Using (80) in (79) and then plugging the obtained result back
into (75), we obtain:

E

{
ük (τ)

F ′
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
}

= g̈
(
0
)
E

{
uk (τ)

F ′
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
}

+
√

EsE

{
F ′

k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
}

K∑
l = 1
l 	= k

αl,2p g̈
(
[l − k]T

)
. (81)

As done previously, the two expectations in (81) are derived
in closed-form by integration over the distribution, p

[
uk (τ)

]
,

already established in (50). The final results are given by:

E

{
uk (τ)

F ′
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
}

= 2ρωk,2p , (82)

E

{
F ′

2p,α

(
u(k)

)
F2p,α

(
uk (τ)

)
}

=
√

Es

σ2
αk,2p , (83)

which are used in (81) to yield:

E

{
ük (τ)

F ′
k,2p

(
uk (τ)

)
Fk,2p

(
uk (τ)

)
}

= 2ρ

[
ωk,2p g̈

(
0
)

+ αk,2p

∑
l 	= k

αl,2p g̈
(
[l − k]T

)]
. (84)

Finally, by injecting (65), (66), (74), and (84) back into (54), the
analytical expression of γk,2p(τ) is obtained in (71) given at the
bottom of the previous page. Due to the apparent symmetries
between the distributions of the two RVs uk (τ) and vk (τ),
the analytical expression of γk,2p−1(τ) can be directly deduced
from the one of γk,2p(τ) by easy identifications as given by
(72) displayed on the bottom of the previous page as well. The
closed-form expression for the TD CA CRLB is then obtained
as the inverse of the Fisher information given by (47), i.e.:

CRLB(τ) =
1∑K

k=1 γk,2p(τ) + γk,2p−1(τ)
. (85)

It is worth mentioning here that the turbo-code setup is not
needed in our derivations and that the new CA CRLB expres-
sion (85) is actually valid for any coded system in general. In
fact, we have so far only exploited the fact that the constellation
is Gray-coded and we have expressed the CA TD CRLBs explic-
itly in terms of the coded bits’ a priori LLRs. Yet, we will explain
in the next subsection how these unknown LLRs are obtained
from the output of the SISO decoders in a turbo-coded system.
Yet, they can also be obtained from LDPC-coded systems in
the very same way if the latter are decoded with the turbo
principle [41], [42] (i.e., MAP or BCJR decoder). In this
case, the so-called check nodes (C-nodes) and variable nodes
(V-nodes) [41] play the very same role as SISO decoders in
turbo-coded systems.

E. Evaluation of the Analytical CA CRLBs

In order to compute and plot the new CA CRLBs, one
needs to evaluate the coefficients ωk,q and αk,q for q = 2p and
q = 2p − 1. These coefficients are, however, functions of the a
priori LLRs, Ll(k), as seen from (55) and (56). In the sequel,
we briefly explain how these LLRs can be obtained from the
output of the SISO decoders at the convergence of the BCJR
algorithm. First, the MF returns a sequence of K symbol-rate
samples:

y(τ) =
[
y1(τ), y2(τ), . . . , yK (τ)

]T
, (86)



BELLILI et al.: TIME SYNCHRONIZATION OF TURBO-CODED SQUARE-QAM-MODULATED TRANSMISSIONS: CA ML ESTIMATOR 10785

where (cf. Appendix A):

yk (τ) =
∫ +∞

−∞
y(t)h(t − kT − τ)dt =

√
Esa(k) + wk (τ).

(87)

Then, the soft demapper extracts the so-called bit likelihoods:

Λl(k) � ln

(
p
[
y(τ)

∣∣bk
l = 1

]
p
[
y(τ)

∣∣bk
l = 0

]
)

, (88)

for all the code bits and feed them as inputs to the turbo decoder.
By exchanging the so-called extrinsic information between the
two SISO decoders, the a posteriori LLRs of the code bits:

Υl(k) = ln

(
P
[
bk
l = 1

∣∣y(τ)
]

P
[
bk
l = 0

∣∣y(τ)
]
)

. (89)

are updated iteratively according to the turbo principle. We
denote their values at the rth turbo iteration as Υ(r)

l (k). Af-
ter say R turbo iterations, a steady state is achieved wherein
Υ(R)

l (k) ≈ Υl(k), for every l and k, and their signs are used to
detect the bits. Yet, owing to the well-known Bayes’ formula,
we have:

P
[
bk
l = 1

∣∣y(τ)
]

=
p
[
y(τ)

∣∣bk
l = 1

]
P
[
bk
l = 1

]
p[y(τ)]

, (90)

and

P
[
bk
l = 0

∣∣y(τ)
]

=
p
[
y(τ)

∣∣bk
l = 0

]
P
[
bk
l = 0

]
p[y(τ)]

. (91)

Therefore, by taking the ratio of (90) and (91) and applying the
natural logarithm, it immediately follows that:

Ll(k) = Υl(k) − Λl(k) ≈ Υ(R)
l (k) − Λl(k), (92)

meaning that the required a priori LLRs of the code bits can
be easily obtained from their steady-state a posteriori LLRs
and Λl(k) already computed by the soft demapper prior to data
decoding.

V. NEW TIME DELAY CA ML ESTIMATOR

As mentioned previously, the timing recovery task is inte-
grated within the turbo iteration loop. But in order to initiate the
turbo decoding process itself, the latter needs some preliminary
information-bearing symbol-rate samples. The latter can be ob-
tained at the output of the MF (corrected with τ̂ML-NDA) where
τ̂ML-NDA is the NDA MLE for the TD parameter estimated as:

τ̂ML-NDA = argmax
τ

L(0)(τ), (93)

where L(0)(.) is the NDA LLF obtained directly from its CA
counterpart in (44) by setting5 Ll(k) = 0 for all l and k, i.e.:

L(0)(τ) =
K−1∑
k=0

[
ln
(
F
(
uk (τ)

))
+ ln

(
F
(
vk (τ)

))]
, (94)

5In the NDA case (i.e., before starting data decoding), no a priori information
about the bits is available at the receiver end, i.e., P [bk

l = 0] = P [bk
l = 1] =

1/2 and thus Ll (k) = 0 for all l and k.

in which F (.) is simply given by:

F (x) =
2p −1∑
i=1

e−ρNa d2
p [2i−1]2

cosh
(

2S [2i−1]
√

Na dp

σ 2 x
)
.

The iterative algorithm that maximizes L(0)(τ) with respect to
τ in (93) will be detailed at the end of this section. Note also
that uk (τ) and vk (τ) involved in (94) are the real and imaginary
parts of a discrete-time MF output that is obtained as follows.
At the receiver side, y(t) is upsampled using a sampling period
Ts < T/(1 + α) with α being the roll-off factor to obtain:

yl � y(lTs) =
√

Es

K∑
k=1

a(k)h(lTs − kT − τ) + w(lTs).

These high-rate samples are then passed through a discrete-
time MF to obtain the symbol-rate samples:

yk (τ) = yl � h(lTs − kT − τ) =
∑

l

ylh(lTs − kT − τ)dt,

from which we obtain uk (τ) = �{yk (τ)} and vk (τ) =
�{yk (τ)} which are used in (94). Once τ̂ML-NDA is acquired,
the corresponding sequence of symbol-rate samples:

y(τ̂ML-NDA) =
[
y1(τ̂ML-NDA), y2(τ̂ML-NDA), . . . , yK (τ̂ML-NDA)

]T
,

is passed to the soft demapper in order to find the bit likelihoods
required to start the decoding process. To exploit the output of
the decoder and better re-synchronize the system, at a per-turbo-
iteration basis, we modify (92) as follows:

L
(r)
l (k) = Υ(r)

l (k) − Λ(r−1)
l (k), (95)

in order to obtain a more refined TD estimate, τ̂
(r)
ML-CA, after

each rth turbo iteration as will be explained shortly. Note here
that Λ(r−1)

l (k) are the bit likelihoods that are obtained after

re-synchronizing the system with τ̂
(r−1)
ML-CA, i.e., the TD estimate

corresponding to the previous turbo iteration. These are fed to
the SISO decoders to compute an update for the a posteriori
LLRs, Υ(r)

l (k), at the current rth turbo iteration. The refined
TD MLE is thereof obtained as:

τ̂
(r)
ML-CA = argmax

τ
L(r)(τ), (96)

where L(r)(τ) is the CA LLF in (44) evaluated using L
(r)
l (k)

instead of Ll(k), i.e.:

L(r)(τ) =
K∑

k=1

ln
(
F

(r)
k,2p

(
uk (τ)

))
+ ln

(
F

(r)
k,2p−1

(
vk (τ)

))
,

in which F
(r)
k,q (.) is given by:

F
(r)
k,q (x) =

2p −1∑
i=1

θ
(r)
k,q (i)e

−ρd2
p [2i−1]2

× cosh
(√

Es [2i − 1]dp

σ2
x +

L
(r)
q (k)

2

)
,
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Fig. 1. Flowchart of the new CA TD ML estimator.

for q = 2p and 2p − 1. Here, θ̂
(r)
k,2p(i) and θ̂

(r)
k,2p−1(i) are also

obtained by using L
(r)
l (k) instead of Ll(k) in (40) and (41),

respectively.
A key detail that is stillmissing needs to be addressed here

as how the NDA and CA LLFs are maximized in (93) and
(96). Actually, since these LLFs were derived in closed-form
expressions, they can be easily maximized using any of the
popular iterative techniques such as the well-known Newton-
Raphson algorithm:

τ̂
(r)
i = τ̂

(r)
i−1 −

[(
∂2L(r)(τ)

∂τ 2

)−1
∂L(r)(τ)

∂τ

]
τ = τ̂

( r )
i−1

, (97)

in which τ̂
(r)
i is the TD update pertaining to the ith Newton-

Raphson iteration. The algorithm stops once the convergence
criterion |τ̂ (r)

i − τ̂
(r)
i−1| ≤ ε is met6 to produce τ̂

(r)
ML-CA as the CA

TD MLE during the rth turbo iteration. Note, however, that
the Newton-Raphson algorithm itself is iterative in nature and,
therefore, requires a reliable initial guess, τ̂

(r)
0 , to ensure its

convergence to the global maximum of the underlying objective
LLF. At each rth turbo iteration, the algorithm is initialized by
τ̂

(r)
0 = τ̂

(r−1)
ML-CA (i.e., by the TD MLE pertaining to the previous

turbo iteration). At the very first turbo iteration, however, the
algorithm is initialized with the NDA MLE, τ̂ML-NDA, obtained in
(93). The latter is obtained by maximizing L(0)(τ) itself via the
very same Newton-Raphson algorithm and the corresponding
initial guess is obtained by a broad line search over τ . For better
illustration, Fig. 1 depicts the architecture of the newly proposed
CA ML timing recovery algorithm.

VI. SIMULATION RESULTS

In this section, we provide some graphicalrepresentations of
the new TD CA CRLBs for different modulation orders and
different coding rates. We also analyze its computational com-
plexity and compare it to that of the existing NDA and CA

6Note here that ε is a predefined threshold that governs the required estimation
accuracy.

Fig. 2. Comparison between the empirical and analytical CA CRLBs for
different code rates, R, versus the SNR at two different roll-off factors (QPSK
modulation): (a) roll-off = 0.2, and (b) roll-off = 0.6.

approaches. The encoder is composed of two identical RSCs
concatenated in parallel, having generator polynomials (1, 0,
1, 1) and (1, 1, 0, 1), and a systematic rate R0 = 1

2 each. The
output of the turbo encoder is punctured in order to achieve the
desired code rate R. For the tailing bits, the size of the RSC en-
coders memory is fixed to 4. We consider a root-raised-cosine
(RRC) signal with two different roll-off factors (α = 0.2 and
α = 0.6). We also consider QPSK and 16-QAM, as two rep-
resentative examples of square-QAM constellations, and two
different coding rates, namely R = 1

2 and R = 1
3 .

We begin by verifying in Figs. 2 and 3 that the new analytical
CA CRLBs coincide with their empirical counterparts obtained
previously in [34] from exhaustive Monte-Carlo simulations. In
fact, unlike our closed-form solution, an extremely large num-
ber of noisy observations was generated in [34] in order to find
an empirical value for the expectation involved in the Fisher
information (46). Hence, our new analytical expression corrob-
orates these previous attempts to evaluate the underlying TD
CA CRLBs empirically and allow their immediate evaluation
for any square-QAM turbo-coded signal.

As expected, we alsosee from both figures that the CA CRLBs
are smaller than their NDA counterparts. This highlights the
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Fig. 3. Comparison between the empirical and analytical CA CRLBs for
different code rates, R, versus the SNR at two different roll-off factors
(16-QAM modulation): (a) roll-off = 0.2, and (b) roll-off = 0.6.

Fig. 4. NMSE of the new CA ML estimator for different code rates, R, versus
the SNR at two different roll-off factors (QPSK modulation): (a) roll-off = 0.2,
and (b) roll-off = 0.6.

performance improvements that can be achieved by a coded
system over an uncoded one by exploiting the information about
the transmitted bits that is obtained from the SISO decoders.
Additionally and most prominently, the CA CRLBs decrease
rapidly and reach the DA CRLBs which are the best bounds
ever one would be able to achieve if all the transmitted symbols
were perfectly known to the receiver, hypothetically.

In the sequel, we also assess the performance of the new TD
CA ML estimator using the normalized (by T 2) mean square
error (NMSE) as a performance measure:

NMSE =
1
T 2

∑Mc

m=1

(
τ̂

[m ]
ML-CA − τ̄

)2

Mc
, (98)

where τ̂
[m ]
ML-CA is the estimate of τ generated from the mthMonte-

Carlo run for m = 1, 2 . . . ,Mc . In Figs. 4 and 5, we plot the
NMSE of the new estimator for QPSK and 16-QAM transmis-
sions obtained from Mc = 5000 Monte-Carlo trials, and bench-
mark the resulting performance curves against the correspond-
ing new CA CRLBs. To illustrate the performance advantage
brought by CA estimation as compared to NCA estimation (from
the algorithmic point of view), we also plot in the same figures

Fig. 5. NMSE of the new CA ML estimator for different code rates, R, versus
the SNR at two different roll-off factors (16-QAM modulation): (a) roll-off
= 0.2, and (b) roll-off = 0.6.

the NMSE of the NDA TD ML estimator (93). Figs. 4 and 5
show that the potential estimation performance gains (attributed
to the decoder’s assistance) made predictable now theoretically
by the CA CRLBs can be achieved practically by the newly
proposed CA ML estimator. More interestingly, the new esti-
mator almost reaches the CA CRLB over the entire practical
SNR range confirming thereby its statistical efficiency.

In the same figures, we can also observe unambiguously the
effect of the coding rate, R, on CA estimation performance.
Even though the same NMSE levels are achieved at relatively
high SNRs for R = 1

2 and R = 1
3 , the estimator performs quite

differently for the two rates at the same SNR values. In fact,
with smaller coding rates, more redundancy is introduced by
the encoder and, hence, the decoder becomes more likely able
to correctly detect the transmitted bits, thereby enhancing the
estimation performance. Now, if we turn the tables and assess
the effect of modulation order on estimation performance at
the same coding rate, we observe without any surprise that it
deteriorates with larger constellations at any given SNR level.
This typical behaviour was already observed in NDA estimation
and, as a matter of fact, in any parameter estimation problem
involving linearly-modulated signals. Indeed, when the modu-
lation order increases, the inter-symbol distance decreases for
normalized-energy constellations. As such, at the same SNR
level, noise components have a relatively worse impact on sym-
bol detection andparameter estimation in general.

Figs. 2–5 also reveal that increasing the roll-off factor en-
hances the synchronization performance both in terms of CRLBs
and MSEs. This is hardly surprising since higher roll-off fac-
tors yield smaller inter-symbol interference (ISI) and, therefore,
higher signal-plus-interference-to-noise ratio (SINR). Yet, we
emphasize here the fact that filters with higher roll-off factors
are much more difficult to realize in practice and/or more ex-
pensive.

Finally, we compare the new CA ML TDE (both in terms
of NMSE performance and computational complexity) against
other conventional NDA and CA techniques. In the NDA sce-
nario, we consider both ML and non-ML techniques as outlined
below:
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TABLE I
COMPLEXITY ASSESSMENT OF THE ALGORITHMS (CF., TABLE II)

Fig. 6. NMSE of the estimators versus the SNR, QPSK, roll-off = 0.2, for
two different coding rates: (a) R = 1/2, and (b) R = 1/3.

1) Among the conventional NDA algorithms which are not
derived from ML theory (such as Gardner, Oerder & Meyr,
etc.), we consider the algorithm proposed by Oerder &
Meyr in [17] which will be simply referred to as (OM) in
the sequel.

2) Among the conventional NDA ML algorithms, we con-
sider the Feed-Forward ML approach proposed in [18].

In the CA scenario, however, we gauge the proposed CA
estimator against two existing CA ML approaches, namely
the Decision-Directed ML estimator introduced in [24] and
SP-EM [30].

Being completely blind to the transmitted data, the perfor-
mance of the conventional NDA algorithms is lower bounded
by the NDA CRLB as shown in Figs. 6 and 7. By relying on
the decoder output, however, the newly proposed CA ML esti-
mator (much like the other CA approaches) breaks this barrier
and achieves the DA CRLB. Recall here that the latter quan-
tifies theoretically the best achievable performance, i.e., as if
all the transmitted symbols were perfectly known in advance
to the receiver. This makes the proposed CA estimator enjoy a
clear superiority in terms of estimation accuracy as compared
to the conventional NDA techniques. As shown in Fig. 8, how-
ever, the latter are computationally much less demanding than
all CA approaches. For a complete complexity analysis of the

Fig. 7. NMSE of all the estimators versus the SNR, 16-QAM, roll-off = 0.2,
for two different coding rates: (a) R = 1/2, and (b) R = 1/3.

Fig. 8. Computational complexities of the estimators versus the modulation
order (M ).

different techniques, please refer to Table I. The different pa-
rameters listed there are defined in Table II.

In summary, theproposed CA estimator:
1) enjoys a clear computational advantage against existing

CA estimators while providing the same if not better esti-
mation performance.
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TABLE II
DEFINITION OF THE COMPLEXITY ANALYSIS PARAMETERS IN TABLE I

2) enjoys a clear superiority in terms of estimation perfor-
mance against the conventional NDA algorithms at the
cost, however, of higher computational complexity.

From this perspective, it offers better performance/comp-
lexity tradeoffs than the existing two types of estimators. Opt-
ing to either of the methods in practice depends on the specific
application at hand and its associated performance/complexity
tradeoffs.

VII. CONCLUSION

In this paper, we derived for the first time the closed-
form expressions of the Cramér-Rao lower bounds for code-
aided symbol timing estimation from turbo-coded square-
QAMtransmissions. The new CA CRLBs revealed the huge
performance improvements in terms of timing recovery are
achievable by exploiting the soft information delivered by SISO
decoders at each turbo iteration. The new analytical CRLBs co-
incide exactly with their empirical counterparts established in
previous pioneering works on the subject but from exhaustive
Monte-Carlo simulations. We also developed a new code-aided
ML time delay estimator that is able to achieve the potential per-
formance gains made thoroughly and instantly predictable by the
new closed-form CA CRLBs. The new estimator also exhibits a
remarkable advantage in terms of computational complexity as
compared to the most powerful ML-type algorithm that exists
in the literature, namely SP-EM. Simulations results also show,
asintuitively expected, that the CA estimation performance im-
proves by decreasing the coding rate, i.e., increasing the amount
of redundancy.

APPENDIX A

A.1) Proof of Lemma 1: In order to find the pdfs of uk (τ)
and vi(τ) defined in (36) and (37), respectively, and prove that
they are two independent RVs, we define the following proper

complex RV:

yk (τ) �
∫ +∞

−∞
y(t)h(t − kT − τ)dt = uk (τ) + jvk (τ), (99)

which verifies p[yk (τ)] = p[uk (τ), vk (τ)]. Moreover, replacing
y(t) by its expression given by (3) in (99) and resorting to some
easy algebraic manipulations, we obtain:

yk (τ)

=
√

Es

K∑
k ′=1

a(k′)
∫ +∞

−∞
h(x)h

(
x + [k′ − k]T

)
dt

︸ ︷︷ ︸
g([k ′−k ]T )

+wk (τ),

where wk (τ) is the filtered noise component, i.e.:

wk (τ) �
∫ +∞

−∞
w(t)h(t − kT − τ)dt. (100)

Recall that the shaping pulse g(t) verifies the first Nyquist
criterion stated in (5), i.e., g([k′ − k]T ) = δ(k′ − k), thereby
n leading to:

yk (τ) =
√

Esa(k) + wk (τ). (101)

Further, it can be verified from (100) that wk (τ) is Gaussian
distributed with zero-mean and variance 2σ2. Hence, the pdf of
yk (τ) conditioned on a(k) is also Gaussian; i.e., ∀cm ∈ Cp we
have:

p
[
yk (τ)|a(k) = cm

]

=
1

2πσ2
exp

{
− 1

2σ2

∣∣yk (τ) −
√

Escm

∣∣2} .

After expanding the modulus in the exponential argument, it can
be easily shown that ∀cm ∈ Cp we have:

p
[
yk (τ)|a(k) = cm

]
=

1
2πσ2

e−
|y k ( τ ) |2

2σ 2 Ωτ

(
cm , y(t)

)
, (102)

where Ωτ

(
cm , y(t)

)
is given in (21). Then, by averaging over

all the constellation points in Cp and recalling the expression of
Ω̄k (τ) in (26), the pdf of yk (τ) is obtained as:

p
[
yk (τ)

]
=

1
2πσ2

e−
|y k ( τ ) |2

2σ 2 Ω̄k (τ). (103)

Finally, using the factorization of Ω̄k (τ) obtained in (42) along
with |yk (τ)|2 = u2

k (τ) + v2
k (τ) and βk = βk,2pβk,2p−1, it fol-

lows that unnumbered eqn. shown at the bottom of this page.
From that unnumbered equation, we obtain p[yk (τ)] =

p[uk (τ)]p[vk (τ)]. But since from (99) we already have
yk (τ) = uk (τ) + jvk (τ), then we also have p

[
yk (τ)

]
=

p
[
uk (τ), vk (τ)

]
. Therefore, it follows that p

[
uk (τ), vk (τ)

]
=

p
[
uk (τ)

]
p
[
vk (τ)

]
, meaning that the two RVs uk (τ) and vk (τ)

p
[
yk (τ)

]
=

4βk,2pβk,2p−1

2πσ2
e−

u 2
k

( τ )+ v 2
k

( τ )

2σ 2 Fk,2p

(
uk (τ)

)
Fk,2p−1

(
vk (τ))

=
2βk,2p√

2πσ2
e−

u 2
k

( τ )

2σ 2 Fk,2p

(
uk (τ)

)
︸ ︷︷ ︸

p [uk (τ )]

2βk,2p−1√
2πσ2

e−
v 2

k
( τ )

2σ 2 Fk,2p−1
(
vk (τ)

)
︸ ︷︷ ︸

p [vk (τ )]

.
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are actually independent and their distributions are, respectively,
given by (50) and (51).

A.2) Statistical Independence of uk (τ) and u̇k (τ):
First, it follows from (99) that:

u̇k (τ) =
∂�{yk (τ)}

∂τ
= −

∫
R
�{y(t)

}
ḣ(t − kT − τ)dt.

(104)

Again, we replace y(t) by its expression given in (3) and then
we use the fact that ġ(.) is an odd function to show that:

u̇k (τ) =
√

Es

K∑
k ′=1

�{a(k′)
}
ġ
(
[k − k′]T

)
+ �{ẇk (τ)

}
,

(105)

where ẇk (τ) is the derivative of wk (τ) with respect to τ , which
is obtained by replacing h(t − kT − τ) by −ḣ(t − kT − τ)
back in (100). Recall also that ġ(0) = 0 (since the maximum of
g(x) is located at 0), leading to:

u̇k (τ) =
√

Es

K∑
k ′=1
k ′ 	=k

�{a(k′)
}
ġ
(
[k − k′]T

)
+ �{ẇk (τ)

}
.

(106)

Recall also from (99) that uk (τ) = �{yk (τ)} and, therefore,
we have from (101) :

uk (τ) =
√

Es�
{
a(k)

}
+ �{wk (τ)

}
. (107)

Notice from (106) that u̇k (τ) involves the contribution of all the
symbols except the kth one [i.e., a(k)] that is, in turn, the only
one involved in uk (τ) as seen from (107). Since the symbols are
mutually independent, then in order to show the independence
of uk (τ) and u̇k (τ), it suffices to show the independence of
wk (τ) and ẇk (τ). These are actually two RVs that are obtained
from linear transformations (i.e., integral and derivative) of the
same Gaussian process w(t) and, hence, they are also Gaussian
distributed. Their cross-correlation is given by:

E {wk (τ)ẇk (τ)}

=
∫∫ +∞

−∞
E
{
w(t1)w(t2)

}
h(t1 − kT − τ)ḣ(t2 − kT − τ)dt1dt2

= 2σ2
∫∫ +∞

−∞
δ(t1 − t2)h(t1)ḣ(t2)dt1dt2

= 2σ2ġ(0)

= 0, (108)

meaning that the two Gaussian-distributed RVs wk (τ) and
ẇk (τ) are uncorrelated and, therefore, independent as well.
Consequently, uk (τ) and u̇k (τ) are also independent.

APPENDIX B

Using the decomposition Cp = C̃p ∪ (−C̃p) ∪ C̃∗
p ∪ (−C̃∗

p)
and noticing that:

�{c̃m

}2 = �{− c̃m

}2 = �{c̃∗m
}2 = �{− c̃∗m

}2
,∀c̃m ∈ C̃p ,

we rewrite (60) as follows:

E
{
�{a(k)

}2
}

=
∑

c̃m ∈ C̃p

�{c̃m

}2
(
P
[
a(k) = c̃m

]
+ P

[
a(k) = −c̃m

]

+ P
[
a(k) = c̃∗m

]
+ P

[
a(k) = −c̃∗m

])
. (109)

Moreover, byusing the explicit expressions of the symbols’
APPs given in (28)–(31), along with the identity cosh(x) +
cosh(y) = 2 cosh(x+y

2 ) cosh(x−y
2 ), we obtain the result in

(110).

Pr
[
a(k) = c̃m

]
+ Pr

[
a(k) = −c̃m

]
+Pr

[
a(k) = c̃∗m

]
+ Pr

[
a(k) = −c̃∗m

]

= 2βkμk,p(c̃m )
[
cosh

(
L2p(k) + L2p−1(k)

2

)

+ cosh
(

L2p(k) − L2p−1(k)
2

)]
,

= 4βkμk,p(c̃m )cosh
(

L2p(k)
2

)
cosh

(
L2p−1(k)

2

)
, (110)

Now, plugging (110) back into (109), rewriting the sum over
c̃m ∈ C̃p as a double sum over the counters i and n [where
c̃m = (2i − 1)dp + j(2n − 1)dp as done in (38)], and using the
decomposition in (39), it can be shown that:

E
{
�{a(k)

}2
}

= 4βk

2p −1∑
i=1

2p −1∑
n=1

[
(2i − 1)2d2

pθk,2p(i)θk,2p−1(n)

× cosh
(

L2p(k)
2

)
cosh

(
L2p−1(k)

2

)]

= 2βk,2pcosh
(

L2p(k)
2

) 2p −1∑
i=1

(2i − 1)2d2
pθk,2p(i)

× 2βk,2p−1cosh
(

L2p−1(k)
2

) 2p −1∑
n=1

θk,2p−1(n), (111)

where the decomposition βk = βk,2pβk,2p−1 was used in the last
equality as well. Moreover, it has been recently shown in [40],
LEMMA 3 that for q = 2p and 2p − 1:

2βk,qcosh
(

Lq (k)
2

) 2p −1∑
n=1

θk,q (n) = 1, (112)
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which is used back in (111) to obtain the following result:

E

{
�{a(k)

}2
}

= ωk,2p . (113)
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Alex Stèphenne was born in Quebec, Canada,
on May 8, 1969. He received the B.Ing. de-
gree in electrical engineering from McGill Univer-
sity, Montreal, QC, in 1992, and the M.Sc. and
Ph.D. degrees in telecommunications from INRS-
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