
IEE
E P

ro
of

IEEE TRANSACTIONS ON COMMUNICATIONS 1

User-Centric Base-Station Wireless Access
Virtualization for Future 5G Networks

Slim Zaidi , Oussama Ben Smida , Sofiène Affes , Senior Member, IEEE,
Usa Vilaipornsawai, Liqing Zhang, and Peiying Zhu, Fellow, IEEE

Abstract— User-centric wireless access virtualization (WAV)1

allows each user to be served by a set of carefully selected2

transmission points (TPs) forming a user-specific virtual base3

station (uVBS) adapted to its environment and quality-of-4

service (QoS) requirement. In this way, this new concept breaks5

away from the conventional cell-centric architecture to provide6

boundaryless communications in future fifth-generation (5G)7

networks. This fundamental structural 5G evolution and the8

ultra-dense multi-tier heterogeneous context foreseen in such9

networks require an inevitable rethinking of efficient scalable10

TP clustering. As such, this paper proposes three innovative low-11

cost clustering approaches that enable the user-centric WAV and12

provide dynamic, adaptive, and overlapping TP clusters while13

requiring not only negligible overhead cost but also minimum14

signaling changes at both network and user sides. Contrary to15

existing clustering techniques, the new ones we propose better16

leverage the 5G features such as extreme densification and17

massive connectivity as well as new concepts such as millimeter18

wave (mmWave) spectrum and massive multiple-input-multiple-19

output (MIMO). The simulations show that they may achieve20

until 154% and 282% of throughput and coverage gains, respec-21

tively. Furthermore, these approaches are flexible enough to be22

adapted to different network dimensions (i.e., space and time),23

thereby paving the way for achieving the dramatic performance24

improvements required by the 5G networks to cope with the25

upcoming mobile data deluge.26

Index Terms— Wireless/radio access virtualization, user-centric27

architecture, cloud-radio access network (C-RAN), dynamic28

adaptive clustering, mmWave, massive MIMO.29

I. INTRODUCTION30

MOST academic researchers and industry scientists have31

agreed that the poor cell-edge user experience is the32

most limiting factor of the fourth-generation (4G) radio access33

Manuscript received October 17, 2018; revised January 15, 2019 and
March 30, 2019; accepted March 30, 2019. This work was supported by the
NSERC/Huawei Canada/TELUS CRD Grant on 5G-WAVES (WAV Enabling
Schemes), the DG and CREATE PERSWADE <www.create-perswade.ca>
Programs of NSERC, and a Discovery Accelerator Supplement Award from
NSERC. Parts of this work were presented in [4] and [19]. The associate
editor coordinating the review of this paper and approving it for publication
was S. Muhaidat. (Corresponding author: Slim Zaidi.)

S. Zaidi is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
slim.zaidi@utoronto.ca).

O. B. Smida and S. Affes are with the EMT Centre of INRS, Mon-
treal, QC H5A 1K6, Canada (e-mail: oussama.ben.smida@emt.inrs.ca;
affes@emt.inrs.ca).

U. Vilaipornsawai, L. Zhang, and P. Zhu are with Huawei
Technologies Canada Co. Ltd., Ottawa, ON K2K 3J1, Canada
(e-mail: usa.vilaipornsawai@huawei.com; liqing.zhang@huawei.com;
peiying.zhu@huawei.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2019.2910258

network (RAN). Such an issue was even exacerbated with 34

the recent trend of extreme densification which originally 35

aimed to increase the network capacity by allowing an aggres- 36

sive frequency reuse across large geographic areas [1]–[7]. 37

Significant research endeavors have been devoted to develop- 38

ing some remedial solutions to this issue such as inter-cell 39

interference coordination, coordinated beamforming [8]–[11], 40

and fractional frequency reuse. Although these solutions 41

offered some performance gains at the cost of increased 42

complexity and overhead, they were unable to completely 43

mitigate the cell-boundary effect. 44

Using wireless access virtualization (WAV), future fifth- 45

generation (5G) mobile networks will capitalize, in contrast 46

to their predecessors, on both the extreme densification and 47

massive connectivity that will characterize them to provide 48

boundaryless communications [2]–[7]. This would potentially 49

lead to substantial improvements in terms of network’s spectral 50

and power efficiencies and, hence, to the fulfillment of 5G’s 51

pledge of ubiquitous user experience [12]–[16]. Indeed, with 52

WAV, coverage is planned around the user,1 making it the 53

network’s focal point rather than the cell as is the case in 54

current cell-centric RANs. By adapting the communication 55

link to both its quality-of-service (QoS) requirements and 56

changing propagation environments, the network creates the 57

illusion that each user is virtually followed by a moving 58

cell [17]–[20]. In this way, we break away from the traditional 59

cell-centric RAN to provide boundaryless communications 60

where all users do not experience any cell-edge effects [21]. 61

Practically, this will be done through enabling each user to be 62

served by a set (i.e., cluster) of carefully and optimally selected 63

transmission points (TPs) forming a user-specific virtual base- 64

station (uVBS), making TPs’ clustering (i.e., selection) crucial 65

to any user-centric WAV strategy [22]. 66

Nevertheless, this does not necessarily imply that conven- 67

tional TP clustering approaches developed for 3G/4G networks 68

could be automatically exploited in the virtualized 5G RAN of 69

our concern. Indeed, the fundamental structural 5G evolution 70

toward a user-centric architecture, along with the ultra-dense 71

multi-tier heterogenous context foreseen in such networks, 72

requires an inevitable rethinking of efficient scalable network 73

partitioning into several user-specific virtual base-stations 74

(uVBSs) [23]–[27]. This goal cannot actually be achieved 75

without forsaking the conventional clustering approaches 76

aiming to form TP sets using solely system information, 77

1User refers here to any user equipment such as wireless devices (i.e., smart-
phones, sensors, etc.), vehicles, or machines connected to the network.
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i.e., TPs’ positions and density, their available resources,78

etc. Although they do not incur significant costs in terms79

of complexity, overhead, latency, and power consumption,80

since their resulting uVBSs are predetermined and rarely81

updated (i.e., static), such approaches often achieve poor82

performance both in throughput and spectral efficiency [28].83

This is mainly due to the fact that these sets are not adapted84

to the highly changing users’ environments stemming from85

the lack of user-side information such as the user’s channel86

state information (CSI), channel quality indicator (CQI), and87

signal-to-interference-plus-noise-ratio (SINR).88

Many research groups have focused then on developing89

dynamic adaptive clustering approaches [29]–[36]. Exploiting90

the users’ CSIs and/or received SINRs, these approaches91

dynamically adapt the TP sets forming the uVBSs to each92

user’s environment and QoS requirements. As the user moves,93

its uVBS is updated by dropping some TPs and/or adding94

others so as to achieve much better performance. However,95

dynamic clustering usually requires that all users share their96

CSIs and/or SINRs with a central processor able to design97

and dynamically update the TP sets in order to comply98

with all users’ environments and QoS requirements [37]–[39].99

This obviously causes huge overhead, latency, and power100

costs which will certainly be exacerbated with the network101

densification and massive connectivity foreseen in future 5G102

networks. Moreover, the uVBSs are usually formed using103

highly-complex iterative greedy algorithms that explore all104

potential set constructions to ultimately settle on network105

partitions that are very often far from optimal. Besides, in106

order to completely remove the cell-edge effect, TP sets107

forming the uVBSs must overlap [36]. This may increase108

exponentially the number of possibilities and, hence, the clus-109

tering complexity. What also makes existing dynamic clus-110

tering approaches unsuitable for virtualized 5G RAN is that111

set construction possibilities may dramatically increase due112

to the extreme densification and massive connectivity in the113

ultra-dense multi-tier heterogenous context foreseen in such114

networks.115

Besides their high complexity and cost, most dynamic116

clustering techniques suffer from another drawback that may117

also hinder their implementation in virtualized 5G RANs.118

Indeed, they often ignore key system information such as TP119

density and available resources, thereby causing substantial120

discrepancies between traffic loads at different TPs. Among121

the few attempts to overcome such an issue, we found the122

pioneering work of Zarifi et al. [36] which has developed123

a dynamic clustering approach able of balancing the traffic124

load among different TPs in a user-centric WAV context.125

By accounting for the TP loads when forming the users’126

serving uVBSs, the approach in [36] significantly improves127

dynamic clustering. This comes, however, again at the cost of128

increased complexity.129

In summary, two different TP clustering approaches exist so130

far: i) static low-cost but inefficient clustering, and ii) dynamic131

adaptive efficient but highly-complex and expensive cluster-132

ing. As both dynamic clustering’s high efficiency and static133

clustering’s low cost features are key to enabling user-centric134

WAV, this work aims at developing a best-of-the-two-worlds135

Fig. 1. System model.

solution that combines both approaches’ benefits while avoid- 136

ing their drawbacks. 137

In this paper, we propose three innovative low-cost cluster- 138

ing approaches that enable user-centric WAV of base stations 139

and provide dynamic, adaptive, and overlapping TP clusters 140

while requiring not only negligible overhead cost, but also 141

minimum signaling changes at both network and user sides. 142

In contrast to existing clustering techniques, the new ones 143

better leverage 5G features such as extreme densification 144

and massive connectivity as well as new concepts such as 145

millimeter wave (mmWave) spectrum and massive multiple- 146

input multiple-output (MIMO). Furthermore, these approaches 147

are flexible enough to be adapted to different network dimen- 148

sions (i.e., space, time, etc.), thereby paving the way for 149

achieving the dramatic performance improvements required by 150

5G networks to cope with the upcoming mobile data deluge. 151

II. NETWORK MODEL 152

The system of our concern consists, as illustrated in Fig. 1, 153

of a cloud-RAN (C-RAN) comprised of M TPs connected 154

through fiber to a central unit (CU) and N users. Each TP 155

is equipped with K antennas while users are assumed, for 156

the sole sake of simplicity, to have a single antenna. We also 157

assume that all users are actively communicating with the 158

network during TP clustering. 159

III. PROPOSED USER-CENTRIC WAV APPROACHES 160

In this section, we propose three innovative clustering 161

approaches aiming to enable user-centric WAV of base 162

stations. 163

A. Approach 1 164

In this approach, we propose to use the maximum reference 165

signal received power (RSRP) as user-side information. Let 166

P k
max denote the maximum RSRP at the k-th user given by 167

P k
max = max {Pi−k, i = 1, . . . , M}, (1) 168

where Pi−k is the RSRP of the i-th TP at the k-th user. 169

Let us also consider a system parameter α ∈ [0, 1] which 170

encompasses system information such as users’ and TPs’ 171

densities, positions, and available resources. Using α along 172

with (1), one could build from the M TPs in the C-RAN the 173

following k-th user’s serving cluster (SC) (i.e., serving uVBS): 174

SCk =
{
TPi=1,...,M/s.t. αP k

max ≤ Pi−k ≤ P k
max

}
. (2) 175
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Fig. 2. Single-serving TP selection.

Fig. 3. Approach 1.

In other words, using Approach 1, any TP whose RSRP176

at the k-th user is large enough to be in the interval177 [
αP k

max, P
k
max

]
will serve it. Let us consider the conventional178

serving-cell TP selection illustrated in Fig. 2 where each user179

is served only by the TP with the highest RSRP. Solid blue180

and dotted red arrows refer to serving and interference links,181

respectively. From this figure, the target user (TU) is subject182

to many interference sources from neighboring TPs. However,183

when the proposed clustering approach is applied, as shown184

in Fig. 3, most of this interference will be turned into useful185

power, thereby improving the perceived QoS at this TU.186

As α decreases, more TPs may join the SC (i.e., serving187

uVBS) and, hence, the TU’s throughput could be improved188

by the joint transmission of its data through all TPs in its189

SC. However, a very small α may unfortunately have an190

opposite effect on not only the TU’s throughput, but also the191

overall network performance. Indeed, in such a case, other192

users may have solicited a large number of TPs to jointly193

transmit their data, thereby decreasing the resources left for194

allocation to the TU and, hence, its throughput. Moreover,195

a small α means that more resources are dedicated to a smaller196

number of users. Since the network resources are limited,197

it becomes much more likely that an increasing number of198

Fig. 4. Approach 2.

TPs and users be in shortage of resources or outage of service, 199

respectively. Consequently, α must be carefully optimized 200

to guarantee a tradeoff between each user QoS and overall 201

network performance, through optimal resources utilization. 202

Computation of this parameter will be carefully discussed later 203

in Section IV. 204

B. Approach 2 205

In this approach, we propose that the k-th user requests the 206

TPs causing strong interference to perform interference nulling 207

towards it instead of serving it as in Approach 1. The selected 208

TPs form then the k-th user’s nulling cluster (NC) (i.e., nulling 209

uVBS) defined as 210

NCk =
{
TPi=1,...,M/s.t. βP k

max ≤ Pi−k < P k
max

}
, (3) 211

where β is a system parameter broadcasted by the CU. 212

Another major difference worth underlining here between 213

Approaches 1 and 2 is that the CU broadcasts both the k-th 214

user’s data and CSIs to the TPs in SCk in the first, but only 215

the CSIs to the TPs in NCk in the second. Hence, Approach 2 216

allows both overhead and latency saving. As could be observed 217

from Fig. 4, using Approach 2, the strong interfering links 218

are canceled by performing interference nulling toward TU, 219

resulting thereby in substantial throughput improvement. As β 220

decreases, more interference is canceled and better will be 221

the performance. As in Approach 1, it is not possible to 222

indefinitely decrease β due to the limited TPs’ nulling capabil- 223

ities. Indeed, each TP could perform simultaneous interference 224

nulling toward at most (K − 1) users. As β decreases, 225

the number of nulling requests received by a TP increases 226

and may exceed (K − 1). At some point, this TP could no 227

longer handle all the constantly-increasing number of nulling 228

requests and, hence, some other users will no longer be able 229

to equally benefit from the TP’s nulling capabilities and will 230

suffer instead helplessly from its interference. Accordingly, β 231

must also be optimized to guarantee both optimal system per- 232

formance and resource utilization. Again, computation of this 233

parameter will be also carefully discussed later in Section IV. 234
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Fig. 5. Approach 3.

C. Approach 3235

In this approach, we propose to combine the two previous236

approaches, as illustrated in Figure 5. Two different clusters237

are then associated at the same time to the k-th user:238

SCk =
{
TPi=1,...,M/s.t. αP k

max ≤ Pi−k ≤ P k
max

}
, (4)239

and240

NCk =
{
TPi=1,...,M/s.t. βαP k

max ≤ Pi−k < αP k
max

}
. (5)241

This means that the k-th user will send serving requests to242

the TPs with high RSRPs (i.e., Pi−k ∈ [
αP k

max, P
k
max

]
) and243

nulling ones to those with moderate RSRPs (i.e., Pi−k ∈244 [
βαP k

max, αP k
max

[
) yet strong enough to affect the TU’s245

performance. Hence, joint optimization of both α and β is246

required in this approach.247

As mentioned above, all the proposed approaches rely on248

clever choices of α and/or β that must be properly optimized249

to guarantee optimal network performance. One should then250

investigate the available methods able to compute such para-251

meters. Some of them are listed and carefully discussed in the252

next section.253

IV. PARAMETERS COMPUTATION254

The system parameters α and β may be actually computed255

online or offline using one of the following methods:256

• System-level simulations (i.e,. heuristic): The parame-257

ters are obtained offline using a system-level simulator.258

A set of α and/or β value/s are first picked from the inter-259

val [0, 1] with ideally a small step before running a sim-260

ulation campaign for each them. The optimal parameters261

are those providing the best overall network performance.262

This process should be repeated for different network263

setups (i.e., different TP and user densities). Please note264

that we opt in this work for this heuristic method due to265

its simplicity and low cost.266

• Experimentation: The parameters are obtained online by267

conducting several field-tests during network operation.268

This method obviously offers more accurate results but 269

increases considerably the cost. 270

• Calibration: α and/or β could be randomly selected 271

from the interval [0, 1] or initialized by one of the two 272

methods listed above and then broadcasted throughout 273

the network. The CU then saves the resulting throughput 274

before updating after each given time period (in minutes, 275

hours, days, . . . depending on traffic variations) α and β 276

as α±Δα and β±Δβ and then broadcasting them once 277

again throughout the network. If the resulting throughput 278

increases or decreases, the CU calibrates both parameters 279

accordingly at their next broadcast. These steps can be 280

repeated online very rapidly until stabilization, then at 281

relatively much slower paste for regular updates as the 282

need be. 283

• Artificial Intelligence (AI) and Machine Learning 284

(ML): TPs could help the CU build the complex rela- 285

tionship between the optimal parameter values and the 286

network and user information by applying AI and ML 287

online over their data. The latter can be easily collected 288

in a C-RAN deployment through the centralized fiber 289

connections to the CU. 290

Please note that α and/or β could be computed for the whole 291

network or locally (i.e. location-based parameters) for each 292

subnetwork (i.e., group of TPs and users). This makes our 293

new clustering approaches more adequate for deployment in 294

different subnetwork conditions varying from one sub-area to 295

another and, hence, capable of further enhancing the over- 296

all network performance. Subnetworks are not only allowed 297

to adopt different parameters, but also different approaches, 298

among the three proposed here. Besides the spatial dimension, 299

one may also exploit the temporal one for even better adjusted 300

service differentiation among subnetworks and obtain time- 301

varying (i.e., period-based parameters) values of α and/or β 302

that properly adjust to each subnetwork’s traffic load variations 303

using for instance the calibration method discussed above. 304

Furthermore, α and/or β can be adapted to different network 305

applications and services (i.e., application- and service-based 306

parameters). Smaller and/or larger value(s) α and/or β, should 307

be chosen to accommodate high data-rate or QoS applications 308

and services to provide them with more payload and/or nulling 309

resources, and vice-versa. 310

V. ENABLING MECHANISMS 311

In this section, we present and discuss the different mecha- 312

nisms that may enable the implementation of the above devel- 313

oped approaches. We have actually three different options: 314

A. Option 1: User Recommends TP Cluster(s) 315

If this option is adopted, each user selects its own TP 316

cluster(s) based on Approach 1, 2, or 3 and feedbacks only 317

the RSRPs of the TPs in SC and/or NC to the network. 318

Using this scheme, users do not transmit any non-selected TP’s 319

RSRPs, thereby reducing not only their power consumption, 320

but also the system overhead cost. However, it requires that the 321

network broadcast α and/or β. Obviously, these information 322

of at most two reals incur negligible additional overhead 323
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TABLE I

COMPLEXITY COMPARISON BETWEEN THE PROPOSED APPROACHES AND SOME BENCHMARKS AVAILABLE IN THE LITERATURE

and power costs and, further, do not require any additional324

computing capability at the network side. Option 1 requires325

then a minimal change at low-cost of the current RAN326

generation. Another advantage of this option is that it allows327

refinement or overwriting of each user’s TP cluster(s). Indeed,328

the network may deny the access to some TPs for instance329

when their traffic load is extremely high or to serve users330

with higher priority or QoS requirement. In such a case, some331

selected TPs could be substituted or completely removed from332

SC and/or NC.333

B. Option 2: User Decides on TP Cluster(s)334

The decision on TP cluster(s) may be locally made by335

each user using the parameter(s) broadcasted by the network.336

In such a case, the user does not feedback any RSRP, thereby337

further reducing both the overhead and power costs. However,338

each user needs to inform the network of its selected TPs at339

the cost of a negligible overhead. Even the latter could actually340

be easily avoided if the user simply feedbacks the CSIs/CQIs341

of the selected TPs during the transmission phase that follows342

the clustering phase. The main drawback of Option 2 is that343

the network is unable to overwrite users’ TP clusters to cope344

with certain conditions, users’ priority, or QoS requirements.345

Nevertheless, this responsibility could be easily handled by346

the user itself at the cost of additional complexity at its side.347

C. Option 3: Network Decides on TP Clusters348

With Option 3, each user feedbacks all its RSRPs to the349

network which decides on TP clusters without broadcasting350

α and/or β. It is obvious that the main drawback of this351

option is the overhead and power costs it incurs. Such costs352

may certainly be exacerbated with the network densification353

and massive connectivity foreseen in future 5G networks.354

However, Option 3 is simple and does not require the least355

change at the user side, making it potentially an interesting356

candidate for early deployments of 5G networks.357

Once again, we have flexibility in the choice of one of the358

above mechanisms. Indeed, different options could be used359

with different subnetworks, at different periods, and/or for360

different applications and services. Furthermore, the choice361

of Option 1, 2, or 3 may depend on the network or each362

subnetwork conditions. Option 3 could be preferred at high363

traffic loads to allow the network make some adjustments364

on TP clusters more easily while Option 1 or 2 could be365

adopted at low traffic loads. The choice among the above366

options could also depend on the users’ priority requirements.367

For instance, privileged users or customers are allowed to use368

Option 2 while the rest of the subscribers are only entitled369

to Option 3. Moreover, the selected option could depend on 370

the user equipment’s capabilities. The smarter is the terminal, 371

more suitable to it will be Option 2. And the higher is its power 372

budget, more appropriate for it will be Option 3. Accordingly, 373

Options 1 and 2 should find better use with future smart 374

devices (smartphones, sensors, etc.) having limited power 375

resources. 376

VI. ADVANTAGES OF THE PROPOSED APPROACHES 377

We summarize below the advantages of the proposed WAV 378

approaches: 379

• Low complexity: Our approaches solely require the 380

optimization of one or two parameters for utilization by 381

multiple users in the same network or subnetwork. Such 382

optimization could be easily achieved through offline 383

simulations and/or calibration as discussed previously. 384

In contrast to the clustering approaches existing thus far, 385

we avoid the implementation of highly-complex itera- 386

tive greedy, yet often sub-optimal algorithms. Table. I 387

shows the complexity of the proposed approaches and 388

the clustering algorithms developed in [30] and [40] 389

at both infrastructure and user sides. In all clustering 390

solutions, all user equipments are expected to forward the 391

information they collect each on the TPs in their vicinity. 392

Therefore, the user-side complexity is proportional to M . 393

On the other hand, at the infrastructure side, whereas the 394

proposed approaches require no extra processing since 395

the parameters alpha and beta are computed offline, once 396

for all, the conventional clustering techniques suffer from 397

relatively huge complexity loads significantly increasing 398

with the numbers of TPs, per TP antennas, and users. 399

Consequently, in contrast to the latter, the proposed 400

approaches may capitalize both on the extreme densifica- 401

tion and massive connectivity foreseen in the upcoming 402

5G networks. 403

• Dynamic, adaptive, user-centric: With our approaches, 404

the TP clusters are formed from overlapping sets whose 405

cardinalities (i.e., the number of TPs in each set) are 406

adapted dynamically to the users’ operating conditions. 407

As one example, using Approach 1, more (less) serving 408

TPs are associated with a user when it is subject to high 409

(low) interference. Such a feature is key to fulfill the 5G 410

pledge of ubiquitous user experience. 411

• Low overhead and latency: Using our approaches 412

alongside Option 1 or 2, the clustering decisions are 413

made locally at the user side. This is in contrast with 414

most existing clustering approaches which require that 415

the CU be aware of all users’ CSIs/SINRs to be able to 416

form the TP sets [30], [36], [40]. Hence, overhead and 417
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latency can be significantly reduced with the developed418

approaches. Indeed, the overhead incurred by the conven-419

tional clustering approaches could be expressed as Boh =420

RrKQl

∑N
i=1 Mi where Mi ∈ {1, . . . , M} is the number421

of TPs in the i-th user vicinity, Ql is the quantization level422

of CSI/SINR, and RCSI
r is the clusters formation refresh-423

ment rate. On the other hand, the overhead incurred by424

Approach 3, which requires the broadcast of both α and425

β, is BProp
oh = 2Rα,β

r Q́l where Rα,β
r is the refreshment426

rate of α and β and Q́l is their quantization level. Assum-427

ing for extreme simplification in favor of the conventional428

clustering techniques that Ql = Q́l,
2 we have Ω =429

Boh/BProp
oh = (RCSI

r

∑N
i=1 Mi)/2Rα,β

r ). Therefore, Ω430

substantially increases not only with the users’, TPs’, and431

antennas’ numbers, but also with RCSI
r /Rα,β

r . Note here432

that the CSI’s refreshment rate is usually in the range of433

milliseconds, i.e., in the TTI (transmission time interval)434

duration scale in LTE, while that of α and β is in the435

range of minutes or even hours, since they depend on the436

numbers of TPs and users. This is actually a fundamental437

difference that drastically reduces the overhead cost.438

Assuming for simplicity, again in favor of conventional439

clustering techniques, that RCSI
r /Rα,β

r = 103, we mea-440

sure Ω = 27.3 103 and Ω = 35.7 103 when ρ = 0.31441

and ρ = 0.44, respectively, with the simulation setup442

described in Section VII. This means that the proposed443

approaches, under the most unfavorable assumptions to444

them (i.e., equal quantization level and much smaller445

than expected refreshment rate ratio), still incur as much446

as 103 times less overhead, and consequently much less447

latency as well (following the same rationale) than their448

conventional counterparts, making them unambiguously449

more suitable for ultra-reliable and low latency (URLLC)450

5G services.451

• Scalability: It is obvious that the performance gain452

achieved by the proposed approaches increases with the453

available network resources. Therefore, they may capital-454

ize on multi-user strategies that allow users to share the455

same resources as well as on new concepts envisioned456

in 5G such as mmWave spectrum and massive MIMO457

which offer abundant spectrum and huge degrees of free-458

doms, respectively. For instance, Approach 1 may take459

advantage of the mmWave spectrum while Approach 2460

may capitalize on massive MIMO. As far as Approach 3461

is concerned, it may take advantage of both concepts.462

This is in contrast with existing clustering techniques463

whose complexity increases exponentially with such tech-464

nologies.465

• Flexibility: By associating different parameters to dif-466

ferent network dimensions, our approaches pave the467

way towards dramatic improvements in both spectral468

and power efficiencies. Indeed, the definition of user-469

class-, service-, and application-based parameters allows470

adequate adaptation of the allocated resources to different471

2Please note that this assumption is made only for the sake of simplicity.
We will show later in Section VII that α and β requires much less accuracy
and, hence, much smaller quantization level than CSIs/SINRs.

classes of subscribers and network services and appli- 472

cations. Furthermore, period- and location-based para- 473

meters that properly adjust to the network conditions at 474

different places and periods would further enhance the 475

throughput of each user. This is again a key feature to 476

fulfill the 5G pledge of ubiquitous user experience. 477

VII. SIMULATIONS RESULTS 478

In this section, system-level simulations are conducted to 479

analyze the performance of the proposed approaches and 480

compare them with the conventional single-serving TP selec- 481

tion and a static clustering solutions. The static clustering 482

technique partitions the network into three adjacent TPs set 483

wherein the user is served by one TP while the others 484

perform interference nulling towards it. The heuristic method 485

described in Section III is adopted here to optimize the 486

parameters α and β. In order to highlight the gains provided 487

by Approaches 1, 2 and 3, we remove any form of multi- 488

user MIMO (MU-MIMO) from our LTE standard-compliant 489

simulator. This means that only one user is associated with 490

each single resource in the spectral and spatial domains. 491

In all simulations, we consider 7 macro-TPs and 10 femto-TPs 492

in each macro with transmit powers of 46 dBm and 20 dBm, 493

respectively, ITU-R channel models of bandwidth 10 MHz, 494

and a full buffer traffic model. We also consider that users 495

are initially (i.e., at t = 0) uniformly distributed in the 496

target area. All TPs are assumed to be equipped with two 497

antennas (i.e., K = 2) while users are equipped with a 498

single antenna. A proportional fair (PF) scheduling is adopted 499

locally at each TP. TP clustering is updated at each sub- 500

frame at the same rate of dynamic point selection (DPS) 501

introduced in LTE release 11 [46]. In this work, maximum 502

ratio transmission (MRT) is employed by SC TPs (i.e., serving 503

uVBSs) to jointly transmit the user’s data while zero-forcing 504

beamforming is implemented by NC TPs (i.e., nulling uVBSs) 505

to avoid interfering on it. Please note that we have opted 506

for these particular signal combining techniques only for the 507

sole sake of simplicity. Our new approaches can, however, 508

support any other advanced signal combining and/or nulling 509

techniques [41]–[45]. 510

A. Approach 1 511

Fig. 6 plots the achieved network throughput gains of 512

Approach 1 over single-serving TP selection versus α for 513

different values of the TP-user densities ratio ρ = M/N . 514

We consider in Figs. 6(a) and 6(b) 35 and 25 users per 515

macro-TP, respectively. From these figures, we confirm the 516

existence of an optimum value αopt for the parameter α. 517

We also observe that αopt depends on ρ. Indeed, it increases 518

when the ρ decreases and vice-versa. This is hardly surprising 519

since the available resources per user increase with ρ and, 520

hence, more serving requests could be accepted by the TPs. 521

In such a case, more TPs may join each user’s SC (i.e., serving 522

uVBS), thereby decreasing αopt. For instance, we find that 523

αopt = 0.3 when ρ = 0.31 whereas αopt = 0.1 when 524

ρ = 0.44. In these cases, Approach 1 achieves throughput 525

gains as high as 49% and 83%, respectively. On the other 526
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Fig. 6. Network throughput gain of Approach 1 over single-serving
TP selection versus α for different values of TP-user densities ratio ρ.

hand, from Fig. 6, a deviation of until 10% from the optimal527

value of α results in at most 2% loss in throughput gains. This528

very important feature makes αopt robust against quantization529

errors. Therefore, with a low quantization level turning out to530

be acceptable, the overhead incurred when broadcasting α can531

be further reduced significantly.532

Fig. 7 plots the CDFs of the user throughput achieved by533

Approach 1, single-serving TP selection, and the static clus-534

tering solution. With Approach 1, the throughput achieved by535

42% of the users exceeds 1.2 Mbits/s while only 6% and 15%536

of users reach the same throughput level with single-serving537

TP selection and static clustering, respectively. This proves538

the efficiency of the proposed approach and highlights the539

dramatic performance improvements it may provide at low540

complexity, latency, and overhead costs, making it an interest-541

ing candidate for future 5G networks.542

Fig. 8 illustrates the pie chart of probabilities for the number543

of serving TPs in each user’s SC with αopt = 0.3 and544

ρ = 0.31. We observe that 20% of the users are served by545

a single TP whereas 62% of them are simultaneously served546

by two TPs, 9% by three, and the rest by four or more.547

Fig. 7. CDFs of the user throughput achieved by Approach 1, single-serving
TP selection, and static clustering when αopt = 0.3 and ρ = 0.31.

Fig. 8. Pie chart of probabilities for the number of serving TPs in each
user’s SC with Approach 1 for αopt = 0.3 and ρ = 0.31.

Hence, in 90% and 97% of the cases, the user’s SC cardinality 548

does not exceed two or three, respectively, and as such does not 549

burden the network virtualization cost. Furthermore, by relying 550

on the collaboration of several TPs, Approach 1 exploits a 551

form of MIMO commonly known as distributed MIMO. The 552

latter reduces the need for deploying or soliciting a relatively 553

costly network infrastructure components such as massive 554

MIMO TPs with very large co-located antennas (inherently 555

handled as well by all three approaches of the proposed BS 556

WAV scheme, yet not considered here due to lack of space) 557

by much more efficient use of the network resources already 558

available. From a broader perspective, the more TPs whether 559

distributed or co-located are available in the network, the larger 560

would be the TP sets cardinality, thereby paving the way 561

toward massive and even ultra massive (UM)-MIMO. Such 562

very desirable feature makes once again the proposed WAV 563

scheme an interesting candidate for future 5G networks. 564
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Fig. 9. Occurrence probabilities of the QPSK, 16-QAM, and 64-QAM
modulations.

Fig. 9 shows the occurrence probabilities of QPSK,565

16-QAM, and 64-QAM obtained with Approach 1, single-566

serving TP selection, and static clustering. With Approach 1,567

64-QAM occurs 87% of the time against 18% and 31% with568

single-serving TP selection and static clustering, respectively.569

Fig. 10. Network throughput gains of Approach 2 over single-serving
TP selection versus β for different values of ρ.

This is expected since Approach 1 offers a dramatic SINR 570

improvement by turning the most powerful interference expe- 571

rienced by each user into a useful one, thereby increasing 572

drastically its link capacity. Consequently, the proposed WAV 573

approach enables the adoption of higher-order modulations 574

in 5G networks to ensure higher rates that better cope with 575

the unprecedented mobile data deluge foreseen in the near 576

future. 577

B. Approach 2 578

In Figs. 10(a) and 10(b), we plot the throughput gain 579

achieved by Approach 2 over single-serving TP selection 580

versus β when ρ = 0.31 and ρ = 0.44, respectively. These 581

figures confirm the existence of an optimum value βopt for 582

the parameters β that depends on ρ. They also confirm the 583

robustness of βopt against quantization errors. On the other 584

hand, the user throughput CDFs in Fig. 11 confirm the 585

significant superiority of Approach 2 over single-serving TP 586

selection and static clustering. Fig. 12 suggests that the optimal 587

throughput gain of Approach 2 can be achieved with 78% of 588

the users requesting only a single nulling TP. 589
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Fig. 11. CDFs of the user throughput achieved by Approach 2, single-serving
TP selection, and static clustering when βopt = 0.25 and ρ = 0.31.

Fig. 12. Pie chart of probabilities for the number of nulling TPs in each
user’s NC with Approach 2 for βopt = 0.25 and ρ = 0.31.

Fig. 13 shows the occurrence probabilities of QPSK,590

16-QAM, and 64-QAM modulations with Approach 2 and591

suggests that 64-QAM occurs 67% of the time. This is once592

again hardly surprising since Approach 2, like Approach 1,593

also offers a dramatic SINR improvement, although rela-594

tively lower due to nulling instead of combining. Hence,595

the lower occurrence of 64-QAM with Approach 2 instead596

of Approach 1. However, the former has the merit of avoiding597

user data broadcast to the NC TPs (i.e., nulling uVBS)598

during the transmission phase. All these results underline once599

again the great potential of the proposed WAV approaches in600

enabling future 5G networks.601

C. Approach 3602

Fig. 14 plots the achieved network throughput gain of603

Approach 3 over single-serving TP selection versus α and β604

for ρ = 0.31. From this figure, we confirm the existence605

of optimum values (αopt, βopt) for the parameters (α, β)606

Fig. 13. Occurrence probabilities of the QPSK, 16-QAM, and 64-QAM
modulations with Approach 2 for βopt = 0.25 and ρ = 0.31.

Fig. 14. Network throughput gains of Approach 3 over single-serving
TP selection versus α and β for ρ = 0.31.

Fig. 15. CDFs of the user throughput achieved by Approach 3, single-
serving TP selection, and static clustering when (αopt, βopt) = (0.45, 0.1)
and ρ = 0.31.

that depend once again on ρ. We find that (αopt, βopt) = 607

(0.45, 0.1) when ρ = 0.31. In such a case, the proposed 608

approach achieves a throughput gain as high as 120%. 609

Fig. 15 plots the CDFs of the user throughput achieved 610

by the proposed approach, single-serving TP selection, and 611
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Fig. 16. Pie charts of probabilities for the number of serving and nulling TPs
in each user’s SC and NC, respectively, with Approach 3 for (αopt, βopt) =
(0.45, 0.1) and ρ = 0.31.

static clustering. We observe that the throughput achieved612

by 55% of the users exceeds 1.5 Mbits/s with Approach 3613

whereas only 3% and 10% of users reach the same throughput614

level with single-serving TP selection and static clustering,615

respectively. Besides these throughput gains, Approach 3616

achieves significant coverage gains against its counterpart,617

thereby reducing (if not suppressing) the cell-edge effect.618

Figs. 16(a) and 16(b) illustrate the pie charts of probabilities619

for the number of serving and nulling TPs in each user’s SC620

and NC, respectively. In Fig. 16(a), 38% of the users are served621

by a single TP whereas 56% of them are simultaneously served622

by two TPs, 4% by three, and the rest (about 2%) by four623

or more. In Fig. 16(b), only one TP cancels its interference624

towards 66% of the users whereas two TPs simultaneously625

cancel their interference towards 15% of them, three are626

required for 10% of users, and four or more for the rest627

(about 9%). Hence, in most cases, each user’s SC (i.e., serving628

uVBS) or NC (i.e., nulling uVBS) cardinality does not exceed629

two and as such Approach 3 does not burden the network630

virtualization cost.631

Fig. 17. Occurrence probabilities of the QPSK, 16-QAM, and 64-QAM
modulations with Approach 3 for (αopt, βopt) = (0.45, 0.1) and ρ = 0.31.

Fig. 17 shows the occurrence probabilities of QPSK, 632

16-QAM, and 64-QAM when Approach 3 is employed. 633

We observe that 64-QAM occurs 95% of the time against 18% 634

with single-serving TP. It is noteworthy here that Approach 3 635

offers a higher occurrence of 64-QAM than Approach 1 and 2. 636

This is hardly surprising since Approach 3 offers a dramatic 637

SINR improvement by turning the strongest interference links 638

into useful ones and by canceling the moderate yet still prob- 639

lematic ones, thereby increasing drastically its link capacity. 640

Consequently, Approach 3 enables the adoption of higher- 641

order modulations in 5G networks to ensure higher rates 642

that better address the unprecedented demand for mobile data 643

expected in the near future. 644

Tab. II summarizes the performance of the proposed 645

approaches and compares them with single-serving TP selec- 646

tion and static clustering. We show that the proposed 647

approaches dramatically outperform single-serving TP selec- 648

tion in terms of both throughput and coverage. Indeed, 649

Approaches 1, 2, and 3 achieve an average throughput 650

of 1.469, 1.256, and 1.785 Mbps while single-serving TP 651

and static clustering do not exceed 0.703 and 0.924 Mbps, 652

respectively. This represents a throughput gain of up to 653

108.9%, 78.6%, and 153.9%, respectively, against the single- 654

serving TP and 58.9%, 35.9%, and 93.1%, respectively, 655

against static clustering. Furthermore, according to Tab. II, 656

Approaches 1, 2, and 3 achieve a coverage gain over single- 657

serving TP of 197.7%, 138.2%, and 282.2%, respectively, and 658

of 139%, 91.3%, and 206.9%, respectively, over the static one. 659

These huge performance gains highlight the efficiency of 660

the proposed approaches and their net superiority over their 661

conventional benchmarks. 662

Tab. III shows the performance of the proposed approaches 663

and their counterparts using high-order modulations 664

(i.e., 256-QAM and 1024-QAM). We show that the average 665

throughput and coverage of all techniques improve with 666

respect to the previous setup of Tab. II that uses only QPSK, 667

16-QAM, and 64-QAM. However, Approaches 1, 2, and 3 668
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TABLE II

PERFORMANCE OF THE PROPOSED APPROACHES AND THEIR COUNTERPARTS

TABLE III

PERFORMANCE OF THE PROPOSED APPROACHES AND THEIR COUNTERPARTS USING VERY-HIGH-ORDER MODULATIONS

relatively benefit a lot more from very-high-order modulations669

that will most likely characterize future 5G and beyond RANs.670

Indeed, they increase average throughput by up to 68.1%,671

59.1%, and 73.2%, respectively, whereas the single-serving672

and static approaches merely offer 9.6% and 22.8% gains,673

respectively. As far as coverage is concerned, it improves674

by 41.8%, 49.6%, and 37.9% with Approaches 1, 2, and 3,675

respectively, while it increases only by 12.5% and 31.6% with676

the single-serving and static approaches, respectively. Indeed,677

the proposed WAV approaches provide much better SINR678

performance than their counterparts and, hence, much more679

high-order-modulation opportunities since they adapt the680

uVBSs (i.e., cooperative TP sets) to the users’ environments.681

Indeed, according to Tab. III, the occurrence probabilities682

of 256-QAM and 1024-QAM substantially increase with the683

proposed approaches and may reach until 37% and 21%,684

respectively. All these prove again that the new WAV685

approaches better capitalize on any extra resources made686

available in any dimension (i.e., temporal, spectral, spatial,687

modulation/signaling order, etc.) that should characterize 5G688

and beyond RANs, and that is - a major asset - regardless of689

the specific radio access technologies to be adopted.690

VIII. CONCLUSION691

In this paper, we proposed three innovative low-cost clus-692

tering approaches that enable user-centric WAV of future 5G693

network base stations and that provide dynamic, adaptive, and694

overlapping TP clusters while requiring not only negligible695

overhead, but also minimum signaling changes at both network696

and user sides. In contrast to existing clustering techniques,697

the new ones better leverage 5G features such as extreme698

densification and massive connectivity as well as new concepts699

such as mmWave spectrum and massive MIMO. Simula-700

tions showed that they may achieve until 154% and 282%701

of throughput and coverage gains, respectively. Furthermore,702

these approaches are flexible enough to be adapted to different703

network dimensions (i.e., space, time, etc.), thereby paving704

the way for achieving the dramatic performance improvements 705

required by 5G networks to cope with the upcoming mobile 706

data deluge. 707
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